Loading…
Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing
We observed a transient noncentrosymmetric phase of ice at water/mineral interfaces during freezing, which enhanced the intensity of the IR-visible sum frequency generation intensity by up to 20-fold. The lifetime of the transient phase was several minutes. Since the most stable form of ice, hexagon...
Saved in:
Published in: | The journal of physical chemistry letters 2017-02, Vol.8 (4), p.871-875 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We observed a transient noncentrosymmetric phase of ice at water/mineral interfaces during freezing, which enhanced the intensity of the IR-visible sum frequency generation intensity by up to 20-fold. The lifetime of the transient phase was several minutes. Since the most stable form of ice, hexagonal and cubic ice, are centrosymmetric, our study suggests the transient existence of stacking-disordered ice during the freezing process at water/mineral interfaces. Stacking-disordered ice, which has only been observed in bulk ice at temperatures lower than −20 °C, is a random mixture of layers of hexagonal ice and cubic ice. However, the transient phase at the ice/mineral interface was observed at temperatures as high as −1 °C. It suggests that the mineral surface may play a role in promoting and stabilizing the formation of stacking-disordered ice at the interface. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.6b02920 |