Loading…

The induction of oxidative stress in cervix carcinoma cells by levoglucosenone derived 4-S-salicyl derivative and (1–4)-S-thio-disaccharides. Part 4

[Display omitted] (1–4)-S-thiodisaccharides were shown to kill various cancer cell lines, including cervix, lung, mammary-gland and colon by unknown mechanisms. Here we identified two actions of levoglucosenone derived (1–4)-S-thiodisaccharides against cervix cancer cells: induction of oxidative str...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry letters 2017-03, Vol.27 (5), p.1215-1219
Main Authors: Sarnik, Joanna, Czubatka-Bienkowska, Anna, Macieja, Anna, Bielski, Roman, Witczak, Zbigniew J., Poplawski, Tomasz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] (1–4)-S-thiodisaccharides were shown to kill various cancer cell lines, including cervix, lung, mammary-gland and colon by unknown mechanisms. Here we identified two actions of levoglucosenone derived (1–4)-S-thiodisaccharides against cervix cancer cells: induction of oxidative stress and DNA damage. In consequence, (1–4)-S-thiodisaccharides lowered the cellular GSH level and changed the expression profile of genes encoding key proteins involved with oxidative stress response. We also observed that (1–4)-S-thiodisaccharides induced DNA damage and interfered with the thioredoxin (Trx) system. Both actions, as induced by FPC6, were stronger when dihedral angles of sulfur bridge were set to 110°, 100° and 109°, clearly indicating differences when compared to FPC8. These findings demonstrate that the 1–4-thio bridge of disaccharide is a powerful anticancer pharmacophore, and its potential use needs further studies.
ISSN:0960-894X
1464-3405
DOI:10.1016/j.bmcl.2017.01.064