Loading…
Landscape-scale controls over 20th century fire occurrence in two large Rocky Mountain (USA) wilderness areas
Topography, vegetation, and climate act together to determine thespatial patterns of fires at landscape scales. Knowledge oflandscape-fire-climate relations at these broad scales (1,000s hato 100,000s ha) is limited and is largely based on inferences andextrapolations from fire histories reconstruct...
Saved in:
Published in: | Landscape ecology 2002-08, Vol.17 (6), p.539-557 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Topography, vegetation, and climate act together to determine thespatial patterns of fires at landscape scales. Knowledge oflandscape-fire-climate relations at these broad scales (1,000s hato 100,000s ha) is limited and is largely based on inferences andextrapolations from fire histories reconstructed from finer scales. In thisstudy, we used long time series of fire perimeter data (fire atlases) and datafor topography, vegetation, and climate to evaluate relationships between large20^sup th^century fires and landscape characteristics in two contrastingareas: the 486,673-ha Gila/Aldo Leopold Wilderness Complex (GALWC)in New Mexico, USA, and the 785,090-ha Selway-BitterrootWilderness Complex (SBWC) in Idaho and Montana, USA. There were importantsimilarities and differences in gradients of topography, vegetation, andclimatefor areas with different fire frequencies, both within and between study areas.These unique and general relationships, when compared between study areas,highlight important characteristics of fire regimes in the Northern andSouthernRocky Mountains of the Western United States.Results suggest that amount and horizontal continuity of herbaceous fuels limitthe frequency and spread of surface fires in the GALWC, while the moisturestatus of large fuels and crown fuels limits the frequency of moderate-to-highseverity fires in the SBWC. These empirically described spatial and temporalrelationships between fire, landscape attributes, and climate increaseunderstanding of interactions among broad-scale ecosystem processes. Resultsalso provide a historical baseline for fire management planning over broadspatial and temporal scales in each wilderness complex.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0921-2973 1572-9761 |
DOI: | 10.1023/A:1021584519109 |