Loading…
Mineralogical characteristics of polymetallic sulfides from the Deyin-1 hydrothermal field near 15 degree S, southern Mid-Atlantic Ridge
A seafloor hydrothermal field, named Deyin-1 later, near 15 degree S southern Mid-Atlantic Ridge (SMAR) was newly found during the 22nd cruise carried out by the China Ocean Mineral Resources Research & Development Association (COMRA). Sulfide samples were collected at three stations from the hy...
Saved in:
Published in: | Acta oceanologica Sinica 2017-02, Vol.36 (2), p.22-34 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A seafloor hydrothermal field, named Deyin-1 later, near 15 degree S southern Mid-Atlantic Ridge (SMAR) was newly found during the 22nd cruise carried out by the China Ocean Mineral Resources Research & Development Association (COMRA). Sulfide samples were collected at three stations from the hydrothermal field during the 26th cruise in 2012. In this paper, mineralogical characteristics of the sulfides were analyzed with optical microscope, X-ray diffractometer, scanning electron microscope and electron microprobe to study the crystallization sequence of minerals and the process of hydrothermal mineralization. According to the difference of the ore-forming metal elements, the sulfide samples can be divided into three types: (1) the Ferich sulfide, which contains mainly pyrite and chalcopyrite; (2) the Fe-Cu-rich sulfide consisting predominantly of pyrite, chalcopyrite and isocubanite, with lesser amount of sphalerite, marmatite and pyrrhotine; and (3) the Fe-Zn-rich sulfide dominated by pyrite, sphalerite and marmatite, with variable amounts of chalcopyrite, isocubanite, pyrrhotine, marcasite, galena and gratonite. Mineral precipitations in these sulfides are in the sequence of chalcopyrite (isocubanite and possible coarse pyrite), fine pyrite, sphalerite (marmatite), galena, gratonite and then the minerals out of the dissolution. Two morphologically distinct generations (Py-I and Py-II) of pyrite are identified in each of the samples; inclusions of marmatite tend to exist in the coarse pyrite crystals (Py-I). Sphalerite in the Fe-Zn-rich sulfide is characterized by a "chalcopyrite disease" phenomenon. Mineral paragenetic relationships and a wide range of chemical compositions suggest that the environment of hydrothermal mineralization was largely changing. By comparison, the Fe-rich sulfide was formed in a relatively stable environment with a high temperature, but the conditions for the formation of the Fe-Cu-rich sulfide were variable. The Fe-Zn-rich sulfide was precipitated during the hydrothermal venting at relatively low temperature. |
---|---|
ISSN: | 0253-505X 1869-1099 |
DOI: | 10.1007/s13131-016-0961-3 |