Loading…
Verification of Kara Sea primary production models with field and satellite observations
The depth-integrated model (Ψ-Mod) and depth-resolved Kara Sea model (KDRSM) of primary production in the water column were verified using field (2013–2015) and satellite (MODIS-Aqua scanner, 2007, 2011, 2013–2015) observations. The KSDRM and Ψ-Mod over- or underestimate the values of integrated pri...
Saved in:
Published in: | Oceanology (Washington. 1965) 2016-11, Vol.56 (6), p.799-808 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The depth-integrated model (Ψ-Mod) and depth-resolved Kara Sea model (KDRSM) of primary production in the water column were verified using field (2013–2015) and satellite (MODIS-Aqua scanner, 2007, 2011, 2013–2015) observations. The KSDRM and Ψ-Mod over- or underestimate the values of integrated primary production (IPP) in autumn by a factor of 2 and 2.5 with shipboard data as input parameters; the rootmean-square difference (RMSD) was 0.29 and 0.39, respectively. In summer, the efficiency of Ψ-Mod decreased by a factor of 1.5 (RMSD = 0.57), while the predictive capacity of the KSDRM remained the same (RMSD = 0.31). In the Laptev Sea in autumn, the KSDRM performed better than Ψ-Mod (the RMSD was 0.24 and 0.41, respectively). There was no sufficient decrease in the predictive skill of either algorithm when MODIS-Aqua data were used as input parameters. Thus, Ψ-Mod, being a simple and precise algorithm, can be recommended for evaluating the annual IPP in the Kara Sea and for studying its long-term variability using satellite data. |
---|---|
ISSN: | 0001-4370 1531-8508 |
DOI: | 10.1134/S0001437016060011 |