Loading…
Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations
Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms...
Saved in:
Published in: | Applied microbiology and biotechnology 2017, Vol.101 (2), p.859-870 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3 |
container_end_page | 870 |
container_issue | 2 |
container_start_page | 859 |
container_title | Applied microbiology and biotechnology |
container_volume | 101 |
creator | Quartaroli, Larissa Silva, Lívia C. Fidélis Silva, Claudio Mudadu Lima, Helena Santiago de Paula, Sergio Oliveira de Oliveira, Valéria Maia de Cássia S. da Silva, Marliane Kasuya, Maria Catarina M. de Sousa, Maíra Paula Torres, Ana Paula R. Souza, Rodrigo Suhett Bassin, João Paulo da Silva, Cynthia Canêdo |
description | Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L
−1
NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as
Nitrosococcus
,
Nitrosomonas
,
Nitrosovibrio
,
Nitrospira
, and
Nitrococcus
; ammonium-oxidizing archaea
Candidatus nitrosoarchaeum
; ANAMMOX microorganisms, such as
Candidatus brocadia, Candidatus kuenenia
, and
Candidatus scalindua
; and microorganisms with the potential to be heterotrophic nitrifying, such as
Paracoccus
spp.,
Pseudomonas
spp.,
Bacillus
spp.,
Marinobacter
sp., and
Alcaligenes
spp. |
doi_str_mv | 10.1007/s00253-016-7902-0 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868318269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476742982</galeid><sourcerecordid>A476742982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</originalsourceid><addsrcrecordid>eNqNkl1vFCEYhSdGY9fqD_DGTOKNXkwFZgYY7zaNH02amPhxTVh4Z5dmgApMdX9C_3Xf7daPNZoYLiAvzznJgVNVTyk5oYSIV5kQ1rcNobwRA2ENuVctaNfigdPufrUgVPSN6Ad5VD3K-YIQyiTnD6sjJiQeSbuorpfex-BmXyfw8UpP9ZiirzduvWmynlxwZVtHN40OJttcpmhnA7b-pguk17XOGXJ2YV2XDdTemRRXDj1M9H6-ldpt0DjPtS61CyaBvsXRuiAVDISSdHEx5MfVg1FPGZ7c7cfVl7dvPp--b84_vDs7XZ43ppe8NKJbjdKsuF5RYmlLe0HACmkHBgNBZOwYcNv3ghrZyaHThBpLTEetoT1I3R5XL_a-GObrDLko77KBadIB4pwVlVy2VDI-_AfactEy0XeIPv8DvYhzChgEqZ6Tgfdk-EWt9QTKhTFierMzVctOcNGxQTKkTv5C4bKATxkDjA7nB4KXBwJkCnwvaz3nrM4-fTxk6Z7Fv8o5waguk_M6bRUlatcqtW-VwlapXasUQc2zu3DzyoP9qfhRIwTYHsh4FdaQfkv_T9cbzJ3XPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856096509</pqid></control><display><type>article</type><title>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Quartaroli, Larissa ; Silva, Lívia C. Fidélis ; Silva, Claudio Mudadu ; Lima, Helena Santiago ; de Paula, Sergio Oliveira ; de Oliveira, Valéria Maia ; de Cássia S. da Silva, Marliane ; Kasuya, Maria Catarina M. ; de Sousa, Maíra Paula ; Torres, Ana Paula R. ; Souza, Rodrigo Suhett ; Bassin, João Paulo ; da Silva, Cynthia Canêdo</creator><creatorcontrib>Quartaroli, Larissa ; Silva, Lívia C. Fidélis ; Silva, Claudio Mudadu ; Lima, Helena Santiago ; de Paula, Sergio Oliveira ; de Oliveira, Valéria Maia ; de Cássia S. da Silva, Marliane ; Kasuya, Maria Catarina M. ; de Sousa, Maíra Paula ; Torres, Ana Paula R. ; Souza, Rodrigo Suhett ; Bassin, João Paulo ; da Silva, Cynthia Canêdo</creatorcontrib><description>Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L
−1
NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as
Nitrosococcus
,
Nitrosomonas
,
Nitrosovibrio
,
Nitrospira
, and
Nitrococcus
; ammonium-oxidizing archaea
Candidatus nitrosoarchaeum
; ANAMMOX microorganisms, such as
Candidatus brocadia, Candidatus kuenenia
, and
Candidatus scalindua
; and microorganisms with the potential to be heterotrophic nitrifying, such as
Paracoccus
spp.,
Pseudomonas
spp.,
Bacillus
spp.,
Marinobacter
sp., and
Alcaligenes
spp.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7902-0</identifier><identifier>PMID: 27812803</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimatization ; Alcaligenes ; Ammonium ; Ammonium Compounds - metabolism ; Archaea ; Archaea - classification ; Archaea - genetics ; Archaea - isolation & purification ; Archaea - metabolism ; Bacillus ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - metabolism ; Biomedical and Life Sciences ; Biota ; Biotechnology ; Civil engineering ; Community involvement ; Denaturing Gradient Gel Electrophoresis ; Denitrification ; DNA, Archaeal - chemistry ; DNA, Archaeal - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; Environmental aspects ; Environmental Biotechnology ; Life Sciences ; Marinobacter ; Microbial colonies ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Nitrates ; Nitrogen ; Nitrosococcus ; Nitrosomonas ; Nitrosovibrio ; Nitrospira ; Oil and gas exploration ; Oil and gas fields ; Oxidation ; Paracoccus ; Phylogeny ; Pseudomonas ; Reactors ; RNA, Ribosomal, 16S - genetics ; Salinity ; Salt ; Salts ; Sequence Analysis, DNA ; Sludge ; Sodium chloride ; Sodium Chloride - metabolism ; Water - chemistry ; Water Microbiology</subject><ispartof>Applied microbiology and biotechnology, 2017, Vol.101 (2), p.859-870</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</citedby><cites>FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1856096509/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1856096509?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,11690,27926,27927,36062,36063,44365,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27812803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quartaroli, Larissa</creatorcontrib><creatorcontrib>Silva, Lívia C. Fidélis</creatorcontrib><creatorcontrib>Silva, Claudio Mudadu</creatorcontrib><creatorcontrib>Lima, Helena Santiago</creatorcontrib><creatorcontrib>de Paula, Sergio Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Valéria Maia</creatorcontrib><creatorcontrib>de Cássia S. da Silva, Marliane</creatorcontrib><creatorcontrib>Kasuya, Maria Catarina M.</creatorcontrib><creatorcontrib>de Sousa, Maíra Paula</creatorcontrib><creatorcontrib>Torres, Ana Paula R.</creatorcontrib><creatorcontrib>Souza, Rodrigo Suhett</creatorcontrib><creatorcontrib>Bassin, João Paulo</creatorcontrib><creatorcontrib>da Silva, Cynthia Canêdo</creatorcontrib><title>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L
−1
NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as
Nitrosococcus
,
Nitrosomonas
,
Nitrosovibrio
,
Nitrospira
, and
Nitrococcus
; ammonium-oxidizing archaea
Candidatus nitrosoarchaeum
; ANAMMOX microorganisms, such as
Candidatus brocadia, Candidatus kuenenia
, and
Candidatus scalindua
; and microorganisms with the potential to be heterotrophic nitrifying, such as
Paracoccus
spp.,
Pseudomonas
spp.,
Bacillus
spp.,
Marinobacter
sp., and
Alcaligenes
spp.</description><subject>Acclimatization</subject><subject>Alcaligenes</subject><subject>Ammonium</subject><subject>Ammonium Compounds - metabolism</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation & purification</subject><subject>Archaea - metabolism</subject><subject>Bacillus</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biota</subject><subject>Biotechnology</subject><subject>Civil engineering</subject><subject>Community involvement</subject><subject>Denaturing Gradient Gel Electrophoresis</subject><subject>Denitrification</subject><subject>DNA, Archaeal - chemistry</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>Environmental aspects</subject><subject>Environmental Biotechnology</subject><subject>Life Sciences</subject><subject>Marinobacter</subject><subject>Microbial colonies</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Nitrosococcus</subject><subject>Nitrosomonas</subject><subject>Nitrosovibrio</subject><subject>Nitrospira</subject><subject>Oil and gas exploration</subject><subject>Oil and gas fields</subject><subject>Oxidation</subject><subject>Paracoccus</subject><subject>Phylogeny</subject><subject>Pseudomonas</subject><subject>Reactors</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Salinity</subject><subject>Salt</subject><subject>Salts</subject><subject>Sequence Analysis, DNA</subject><subject>Sludge</subject><subject>Sodium chloride</subject><subject>Sodium Chloride - metabolism</subject><subject>Water - chemistry</subject><subject>Water Microbiology</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkl1vFCEYhSdGY9fqD_DGTOKNXkwFZgYY7zaNH02amPhxTVh4Z5dmgApMdX9C_3Xf7daPNZoYLiAvzznJgVNVTyk5oYSIV5kQ1rcNobwRA2ENuVctaNfigdPufrUgVPSN6Ad5VD3K-YIQyiTnD6sjJiQeSbuorpfex-BmXyfw8UpP9ZiirzduvWmynlxwZVtHN40OJttcpmhnA7b-pguk17XOGXJ2YV2XDdTemRRXDj1M9H6-ldpt0DjPtS61CyaBvsXRuiAVDISSdHEx5MfVg1FPGZ7c7cfVl7dvPp--b84_vDs7XZ43ppe8NKJbjdKsuF5RYmlLe0HACmkHBgNBZOwYcNv3ghrZyaHThBpLTEetoT1I3R5XL_a-GObrDLko77KBadIB4pwVlVy2VDI-_AfactEy0XeIPv8DvYhzChgEqZ6Tgfdk-EWt9QTKhTFierMzVctOcNGxQTKkTv5C4bKATxkDjA7nB4KXBwJkCnwvaz3nrM4-fTxk6Z7Fv8o5waguk_M6bRUlatcqtW-VwlapXasUQc2zu3DzyoP9qfhRIwTYHsh4FdaQfkv_T9cbzJ3XPw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Quartaroli, Larissa</creator><creator>Silva, Lívia C. Fidélis</creator><creator>Silva, Claudio Mudadu</creator><creator>Lima, Helena Santiago</creator><creator>de Paula, Sergio Oliveira</creator><creator>de Oliveira, Valéria Maia</creator><creator>de Cássia S. da Silva, Marliane</creator><creator>Kasuya, Maria Catarina M.</creator><creator>de Sousa, Maíra Paula</creator><creator>Torres, Ana Paula R.</creator><creator>Souza, Rodrigo Suhett</creator><creator>Bassin, João Paulo</creator><creator>da Silva, Cynthia Canêdo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>2017</creationdate><title>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</title><author>Quartaroli, Larissa ; Silva, Lívia C. Fidélis ; Silva, Claudio Mudadu ; Lima, Helena Santiago ; de Paula, Sergio Oliveira ; de Oliveira, Valéria Maia ; de Cássia S. da Silva, Marliane ; Kasuya, Maria Catarina M. ; de Sousa, Maíra Paula ; Torres, Ana Paula R. ; Souza, Rodrigo Suhett ; Bassin, João Paulo ; da Silva, Cynthia Canêdo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimatization</topic><topic>Alcaligenes</topic><topic>Ammonium</topic><topic>Ammonium Compounds - metabolism</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation & purification</topic><topic>Archaea - metabolism</topic><topic>Bacillus</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biota</topic><topic>Biotechnology</topic><topic>Civil engineering</topic><topic>Community involvement</topic><topic>Denaturing Gradient Gel Electrophoresis</topic><topic>Denitrification</topic><topic>DNA, Archaeal - chemistry</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>Environmental aspects</topic><topic>Environmental Biotechnology</topic><topic>Life Sciences</topic><topic>Marinobacter</topic><topic>Microbial colonies</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Nitrosococcus</topic><topic>Nitrosomonas</topic><topic>Nitrosovibrio</topic><topic>Nitrospira</topic><topic>Oil and gas exploration</topic><topic>Oil and gas fields</topic><topic>Oxidation</topic><topic>Paracoccus</topic><topic>Phylogeny</topic><topic>Pseudomonas</topic><topic>Reactors</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Salinity</topic><topic>Salt</topic><topic>Salts</topic><topic>Sequence Analysis, DNA</topic><topic>Sludge</topic><topic>Sodium chloride</topic><topic>Sodium Chloride - metabolism</topic><topic>Water - chemistry</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quartaroli, Larissa</creatorcontrib><creatorcontrib>Silva, Lívia C. Fidélis</creatorcontrib><creatorcontrib>Silva, Claudio Mudadu</creatorcontrib><creatorcontrib>Lima, Helena Santiago</creatorcontrib><creatorcontrib>de Paula, Sergio Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Valéria Maia</creatorcontrib><creatorcontrib>de Cássia S. da Silva, Marliane</creatorcontrib><creatorcontrib>Kasuya, Maria Catarina M.</creatorcontrib><creatorcontrib>de Sousa, Maíra Paula</creatorcontrib><creatorcontrib>Torres, Ana Paula R.</creatorcontrib><creatorcontrib>Souza, Rodrigo Suhett</creatorcontrib><creatorcontrib>Bassin, João Paulo</creatorcontrib><creatorcontrib>da Silva, Cynthia Canêdo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quartaroli, Larissa</au><au>Silva, Lívia C. Fidélis</au><au>Silva, Claudio Mudadu</au><au>Lima, Helena Santiago</au><au>de Paula, Sergio Oliveira</au><au>de Oliveira, Valéria Maia</au><au>de Cássia S. da Silva, Marliane</au><au>Kasuya, Maria Catarina M.</au><au>de Sousa, Maíra Paula</au><au>Torres, Ana Paula R.</au><au>Souza, Rodrigo Suhett</au><au>Bassin, João Paulo</au><au>da Silva, Cynthia Canêdo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2017</date><risdate>2017</risdate><volume>101</volume><issue>2</issue><spage>859</spage><epage>870</epage><pages>859-870</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L
−1
NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as
Nitrosococcus
,
Nitrosomonas
,
Nitrosovibrio
,
Nitrospira
, and
Nitrococcus
; ammonium-oxidizing archaea
Candidatus nitrosoarchaeum
; ANAMMOX microorganisms, such as
Candidatus brocadia, Candidatus kuenenia
, and
Candidatus scalindua
; and microorganisms with the potential to be heterotrophic nitrifying, such as
Paracoccus
spp.,
Pseudomonas
spp.,
Bacillus
spp.,
Marinobacter
sp., and
Alcaligenes
spp.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27812803</pmid><doi>10.1007/s00253-016-7902-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2017, Vol.101 (2), p.859-870 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1868318269 |
source | ABI/INFORM Collection; Springer Nature |
subjects | Acclimatization Alcaligenes Ammonium Ammonium Compounds - metabolism Archaea Archaea - classification Archaea - genetics Archaea - isolation & purification Archaea - metabolism Bacillus Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Biomedical and Life Sciences Biota Biotechnology Civil engineering Community involvement Denaturing Gradient Gel Electrophoresis Denitrification DNA, Archaeal - chemistry DNA, Archaeal - genetics DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Ribosomal - chemistry DNA, Ribosomal - genetics Environmental aspects Environmental Biotechnology Life Sciences Marinobacter Microbial colonies Microbial Genetics and Genomics Microbiology Microorganisms Nitrates Nitrogen Nitrosococcus Nitrosomonas Nitrosovibrio Nitrospira Oil and gas exploration Oil and gas fields Oxidation Paracoccus Phylogeny Pseudomonas Reactors RNA, Ribosomal, 16S - genetics Salinity Salt Salts Sequence Analysis, DNA Sludge Sodium chloride Sodium Chloride - metabolism Water - chemistry Water Microbiology |
title | Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonium%20removal%20from%20high-salinity%20oilfield-produced%20water:%20assessing%20the%20microbial%20community%20dynamics%20at%20increasing%20salt%20concentrations&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Quartaroli,%20Larissa&rft.date=2017&rft.volume=101&rft.issue=2&rft.spage=859&rft.epage=870&rft.pages=859-870&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7902-0&rft_dat=%3Cgale_proqu%3EA476742982%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1856096509&rft_id=info:pmid/27812803&rft_galeid=A476742982&rfr_iscdi=true |