Loading…

Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations

Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2017, Vol.101 (2), p.859-870
Main Authors: Quartaroli, Larissa, Silva, Lívia C. Fidélis, Silva, Claudio Mudadu, Lima, Helena Santiago, de Paula, Sergio Oliveira, de Oliveira, Valéria Maia, de Cássia S. da Silva, Marliane, Kasuya, Maria Catarina M., de Sousa, Maíra Paula, Torres, Ana Paula R., Souza, Rodrigo Suhett, Bassin, João Paulo, da Silva, Cynthia Canêdo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3
cites cdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3
container_end_page 870
container_issue 2
container_start_page 859
container_title Applied microbiology and biotechnology
container_volume 101
creator Quartaroli, Larissa
Silva, Lívia C. Fidélis
Silva, Claudio Mudadu
Lima, Helena Santiago
de Paula, Sergio Oliveira
de Oliveira, Valéria Maia
de Cássia S. da Silva, Marliane
Kasuya, Maria Catarina M.
de Sousa, Maíra Paula
Torres, Ana Paula R.
Souza, Rodrigo Suhett
Bassin, João Paulo
da Silva, Cynthia Canêdo
description Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L −1 NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as Nitrosococcus , Nitrosomonas , Nitrosovibrio , Nitrospira , and Nitrococcus ; ammonium-oxidizing archaea Candidatus nitrosoarchaeum ; ANAMMOX microorganisms, such as Candidatus brocadia, Candidatus kuenenia , and Candidatus scalindua ; and microorganisms with the potential to be heterotrophic nitrifying, such as Paracoccus spp., Pseudomonas spp., Bacillus spp., Marinobacter sp., and Alcaligenes spp.
doi_str_mv 10.1007/s00253-016-7902-0
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868318269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476742982</galeid><sourcerecordid>A476742982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</originalsourceid><addsrcrecordid>eNqNkl1vFCEYhSdGY9fqD_DGTOKNXkwFZgYY7zaNH02amPhxTVh4Z5dmgApMdX9C_3Xf7daPNZoYLiAvzznJgVNVTyk5oYSIV5kQ1rcNobwRA2ENuVctaNfigdPufrUgVPSN6Ad5VD3K-YIQyiTnD6sjJiQeSbuorpfex-BmXyfw8UpP9ZiirzduvWmynlxwZVtHN40OJttcpmhnA7b-pguk17XOGXJ2YV2XDdTemRRXDj1M9H6-ldpt0DjPtS61CyaBvsXRuiAVDISSdHEx5MfVg1FPGZ7c7cfVl7dvPp--b84_vDs7XZ43ppe8NKJbjdKsuF5RYmlLe0HACmkHBgNBZOwYcNv3ghrZyaHThBpLTEetoT1I3R5XL_a-GObrDLko77KBadIB4pwVlVy2VDI-_AfactEy0XeIPv8DvYhzChgEqZ6Tgfdk-EWt9QTKhTFierMzVctOcNGxQTKkTv5C4bKATxkDjA7nB4KXBwJkCnwvaz3nrM4-fTxk6Z7Fv8o5waguk_M6bRUlatcqtW-VwlapXasUQc2zu3DzyoP9qfhRIwTYHsh4FdaQfkv_T9cbzJ3XPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856096509</pqid></control><display><type>article</type><title>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Quartaroli, Larissa ; Silva, Lívia C. Fidélis ; Silva, Claudio Mudadu ; Lima, Helena Santiago ; de Paula, Sergio Oliveira ; de Oliveira, Valéria Maia ; de Cássia S. da Silva, Marliane ; Kasuya, Maria Catarina M. ; de Sousa, Maíra Paula ; Torres, Ana Paula R. ; Souza, Rodrigo Suhett ; Bassin, João Paulo ; da Silva, Cynthia Canêdo</creator><creatorcontrib>Quartaroli, Larissa ; Silva, Lívia C. Fidélis ; Silva, Claudio Mudadu ; Lima, Helena Santiago ; de Paula, Sergio Oliveira ; de Oliveira, Valéria Maia ; de Cássia S. da Silva, Marliane ; Kasuya, Maria Catarina M. ; de Sousa, Maíra Paula ; Torres, Ana Paula R. ; Souza, Rodrigo Suhett ; Bassin, João Paulo ; da Silva, Cynthia Canêdo</creatorcontrib><description>Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L −1 NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as Nitrosococcus , Nitrosomonas , Nitrosovibrio , Nitrospira , and Nitrococcus ; ammonium-oxidizing archaea Candidatus nitrosoarchaeum ; ANAMMOX microorganisms, such as Candidatus brocadia, Candidatus kuenenia , and Candidatus scalindua ; and microorganisms with the potential to be heterotrophic nitrifying, such as Paracoccus spp., Pseudomonas spp., Bacillus spp., Marinobacter sp., and Alcaligenes spp.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7902-0</identifier><identifier>PMID: 27812803</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimatization ; Alcaligenes ; Ammonium ; Ammonium Compounds - metabolism ; Archaea ; Archaea - classification ; Archaea - genetics ; Archaea - isolation &amp; purification ; Archaea - metabolism ; Bacillus ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteria - metabolism ; Biomedical and Life Sciences ; Biota ; Biotechnology ; Civil engineering ; Community involvement ; Denaturing Gradient Gel Electrophoresis ; Denitrification ; DNA, Archaeal - chemistry ; DNA, Archaeal - genetics ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; Environmental aspects ; Environmental Biotechnology ; Life Sciences ; Marinobacter ; Microbial colonies ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Nitrates ; Nitrogen ; Nitrosococcus ; Nitrosomonas ; Nitrosovibrio ; Nitrospira ; Oil and gas exploration ; Oil and gas fields ; Oxidation ; Paracoccus ; Phylogeny ; Pseudomonas ; Reactors ; RNA, Ribosomal, 16S - genetics ; Salinity ; Salt ; Salts ; Sequence Analysis, DNA ; Sludge ; Sodium chloride ; Sodium Chloride - metabolism ; Water - chemistry ; Water Microbiology</subject><ispartof>Applied microbiology and biotechnology, 2017, Vol.101 (2), p.859-870</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</citedby><cites>FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1856096509/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1856096509?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,11690,27926,27927,36062,36063,44365,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27812803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quartaroli, Larissa</creatorcontrib><creatorcontrib>Silva, Lívia C. Fidélis</creatorcontrib><creatorcontrib>Silva, Claudio Mudadu</creatorcontrib><creatorcontrib>Lima, Helena Santiago</creatorcontrib><creatorcontrib>de Paula, Sergio Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Valéria Maia</creatorcontrib><creatorcontrib>de Cássia S. da Silva, Marliane</creatorcontrib><creatorcontrib>Kasuya, Maria Catarina M.</creatorcontrib><creatorcontrib>de Sousa, Maíra Paula</creatorcontrib><creatorcontrib>Torres, Ana Paula R.</creatorcontrib><creatorcontrib>Souza, Rodrigo Suhett</creatorcontrib><creatorcontrib>Bassin, João Paulo</creatorcontrib><creatorcontrib>da Silva, Cynthia Canêdo</creatorcontrib><title>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L −1 NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as Nitrosococcus , Nitrosomonas , Nitrosovibrio , Nitrospira , and Nitrococcus ; ammonium-oxidizing archaea Candidatus nitrosoarchaeum ; ANAMMOX microorganisms, such as Candidatus brocadia, Candidatus kuenenia , and Candidatus scalindua ; and microorganisms with the potential to be heterotrophic nitrifying, such as Paracoccus spp., Pseudomonas spp., Bacillus spp., Marinobacter sp., and Alcaligenes spp.</description><subject>Acclimatization</subject><subject>Alcaligenes</subject><subject>Ammonium</subject><subject>Ammonium Compounds - metabolism</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation &amp; purification</subject><subject>Archaea - metabolism</subject><subject>Bacillus</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteria - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biota</subject><subject>Biotechnology</subject><subject>Civil engineering</subject><subject>Community involvement</subject><subject>Denaturing Gradient Gel Electrophoresis</subject><subject>Denitrification</subject><subject>DNA, Archaeal - chemistry</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>Environmental aspects</subject><subject>Environmental Biotechnology</subject><subject>Life Sciences</subject><subject>Marinobacter</subject><subject>Microbial colonies</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Nitrosococcus</subject><subject>Nitrosomonas</subject><subject>Nitrosovibrio</subject><subject>Nitrospira</subject><subject>Oil and gas exploration</subject><subject>Oil and gas fields</subject><subject>Oxidation</subject><subject>Paracoccus</subject><subject>Phylogeny</subject><subject>Pseudomonas</subject><subject>Reactors</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Salinity</subject><subject>Salt</subject><subject>Salts</subject><subject>Sequence Analysis, DNA</subject><subject>Sludge</subject><subject>Sodium chloride</subject><subject>Sodium Chloride - metabolism</subject><subject>Water - chemistry</subject><subject>Water Microbiology</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkl1vFCEYhSdGY9fqD_DGTOKNXkwFZgYY7zaNH02amPhxTVh4Z5dmgApMdX9C_3Xf7daPNZoYLiAvzznJgVNVTyk5oYSIV5kQ1rcNobwRA2ENuVctaNfigdPufrUgVPSN6Ad5VD3K-YIQyiTnD6sjJiQeSbuorpfex-BmXyfw8UpP9ZiirzduvWmynlxwZVtHN40OJttcpmhnA7b-pguk17XOGXJ2YV2XDdTemRRXDj1M9H6-ldpt0DjPtS61CyaBvsXRuiAVDISSdHEx5MfVg1FPGZ7c7cfVl7dvPp--b84_vDs7XZ43ppe8NKJbjdKsuF5RYmlLe0HACmkHBgNBZOwYcNv3ghrZyaHThBpLTEetoT1I3R5XL_a-GObrDLko77KBadIB4pwVlVy2VDI-_AfactEy0XeIPv8DvYhzChgEqZ6Tgfdk-EWt9QTKhTFierMzVctOcNGxQTKkTv5C4bKATxkDjA7nB4KXBwJkCnwvaz3nrM4-fTxk6Z7Fv8o5waguk_M6bRUlatcqtW-VwlapXasUQc2zu3DzyoP9qfhRIwTYHsh4FdaQfkv_T9cbzJ3XPw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Quartaroli, Larissa</creator><creator>Silva, Lívia C. Fidélis</creator><creator>Silva, Claudio Mudadu</creator><creator>Lima, Helena Santiago</creator><creator>de Paula, Sergio Oliveira</creator><creator>de Oliveira, Valéria Maia</creator><creator>de Cássia S. da Silva, Marliane</creator><creator>Kasuya, Maria Catarina M.</creator><creator>de Sousa, Maíra Paula</creator><creator>Torres, Ana Paula R.</creator><creator>Souza, Rodrigo Suhett</creator><creator>Bassin, João Paulo</creator><creator>da Silva, Cynthia Canêdo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>2017</creationdate><title>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</title><author>Quartaroli, Larissa ; Silva, Lívia C. Fidélis ; Silva, Claudio Mudadu ; Lima, Helena Santiago ; de Paula, Sergio Oliveira ; de Oliveira, Valéria Maia ; de Cássia S. da Silva, Marliane ; Kasuya, Maria Catarina M. ; de Sousa, Maíra Paula ; Torres, Ana Paula R. ; Souza, Rodrigo Suhett ; Bassin, João Paulo ; da Silva, Cynthia Canêdo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acclimatization</topic><topic>Alcaligenes</topic><topic>Ammonium</topic><topic>Ammonium Compounds - metabolism</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation &amp; purification</topic><topic>Archaea - metabolism</topic><topic>Bacillus</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteria - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biota</topic><topic>Biotechnology</topic><topic>Civil engineering</topic><topic>Community involvement</topic><topic>Denaturing Gradient Gel Electrophoresis</topic><topic>Denitrification</topic><topic>DNA, Archaeal - chemistry</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>Environmental aspects</topic><topic>Environmental Biotechnology</topic><topic>Life Sciences</topic><topic>Marinobacter</topic><topic>Microbial colonies</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Nitrosococcus</topic><topic>Nitrosomonas</topic><topic>Nitrosovibrio</topic><topic>Nitrospira</topic><topic>Oil and gas exploration</topic><topic>Oil and gas fields</topic><topic>Oxidation</topic><topic>Paracoccus</topic><topic>Phylogeny</topic><topic>Pseudomonas</topic><topic>Reactors</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Salinity</topic><topic>Salt</topic><topic>Salts</topic><topic>Sequence Analysis, DNA</topic><topic>Sludge</topic><topic>Sodium chloride</topic><topic>Sodium Chloride - metabolism</topic><topic>Water - chemistry</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quartaroli, Larissa</creatorcontrib><creatorcontrib>Silva, Lívia C. Fidélis</creatorcontrib><creatorcontrib>Silva, Claudio Mudadu</creatorcontrib><creatorcontrib>Lima, Helena Santiago</creatorcontrib><creatorcontrib>de Paula, Sergio Oliveira</creatorcontrib><creatorcontrib>de Oliveira, Valéria Maia</creatorcontrib><creatorcontrib>de Cássia S. da Silva, Marliane</creatorcontrib><creatorcontrib>Kasuya, Maria Catarina M.</creatorcontrib><creatorcontrib>de Sousa, Maíra Paula</creatorcontrib><creatorcontrib>Torres, Ana Paula R.</creatorcontrib><creatorcontrib>Souza, Rodrigo Suhett</creatorcontrib><creatorcontrib>Bassin, João Paulo</creatorcontrib><creatorcontrib>da Silva, Cynthia Canêdo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quartaroli, Larissa</au><au>Silva, Lívia C. Fidélis</au><au>Silva, Claudio Mudadu</au><au>Lima, Helena Santiago</au><au>de Paula, Sergio Oliveira</au><au>de Oliveira, Valéria Maia</au><au>de Cássia S. da Silva, Marliane</au><au>Kasuya, Maria Catarina M.</au><au>de Sousa, Maíra Paula</au><au>Torres, Ana Paula R.</au><au>Souza, Rodrigo Suhett</au><au>Bassin, João Paulo</au><au>da Silva, Cynthia Canêdo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2017</date><risdate>2017</risdate><volume>101</volume><issue>2</issue><spage>859</spage><epage>870</epage><pages>859-870</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L −1 NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as Nitrosococcus , Nitrosomonas , Nitrosovibrio , Nitrospira , and Nitrococcus ; ammonium-oxidizing archaea Candidatus nitrosoarchaeum ; ANAMMOX microorganisms, such as Candidatus brocadia, Candidatus kuenenia , and Candidatus scalindua ; and microorganisms with the potential to be heterotrophic nitrifying, such as Paracoccus spp., Pseudomonas spp., Bacillus spp., Marinobacter sp., and Alcaligenes spp.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27812803</pmid><doi>10.1007/s00253-016-7902-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2017, Vol.101 (2), p.859-870
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1868318269
source ABI/INFORM Collection; Springer Nature
subjects Acclimatization
Alcaligenes
Ammonium
Ammonium Compounds - metabolism
Archaea
Archaea - classification
Archaea - genetics
Archaea - isolation & purification
Archaea - metabolism
Bacillus
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Biomedical and Life Sciences
Biota
Biotechnology
Civil engineering
Community involvement
Denaturing Gradient Gel Electrophoresis
Denitrification
DNA, Archaeal - chemistry
DNA, Archaeal - genetics
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
Environmental aspects
Environmental Biotechnology
Life Sciences
Marinobacter
Microbial colonies
Microbial Genetics and Genomics
Microbiology
Microorganisms
Nitrates
Nitrogen
Nitrosococcus
Nitrosomonas
Nitrosovibrio
Nitrospira
Oil and gas exploration
Oil and gas fields
Oxidation
Paracoccus
Phylogeny
Pseudomonas
Reactors
RNA, Ribosomal, 16S - genetics
Salinity
Salt
Salts
Sequence Analysis, DNA
Sludge
Sodium chloride
Sodium Chloride - metabolism
Water - chemistry
Water Microbiology
title Ammonium removal from high-salinity oilfield-produced water: assessing the microbial community dynamics at increasing salt concentrations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonium%20removal%20from%20high-salinity%20oilfield-produced%20water:%20assessing%20the%20microbial%20community%20dynamics%20at%20increasing%20salt%20concentrations&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Quartaroli,%20Larissa&rft.date=2017&rft.volume=101&rft.issue=2&rft.spage=859&rft.epage=870&rft.pages=859-870&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7902-0&rft_dat=%3Cgale_proqu%3EA476742982%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c586t-74bf8cb6ab10d131570ed78d92e90c58f42e6d5571c84894a01cd0c41dc15e8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1856096509&rft_id=info:pmid/27812803&rft_galeid=A476742982&rfr_iscdi=true