Loading…

Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex

ABSTRACT It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS)...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2017-02, Vol.85 (2), p.312-321
Main Authors: Holinski, Alexandra, Heyn, Kristina, Merkl, Rainer, Sterner, Reinhard
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353
cites
container_end_page 321
container_issue 2
container_start_page 312
container_title Proteins, structure, function, and bioinformatics
container_volume 85
creator Holinski, Alexandra
Heyn, Kristina
Merkl, Rainer
Sterner, Reinhard
description ABSTRACT It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.
doi_str_mv 10.1002/prot.25225
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868342189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897653321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353</originalsourceid><addsrcrecordid>eNp9kctO3TAQhq2KqpxCN30AZIlNNwFfY3uJjiithASqYB05zgQMiX2IHdF0yZPXh0sXLLoae-bzzPz-EfpKyRElhB1vppiPmGRMfkArSoyqCOViB62I1qriUstd9DmlO0JIbXj9Ce0yVaIwZIWe1nFsffDhBtvgIOXJDjjBwwzlhidwMZTc7LKPAT_6fIu308AH3EHyNwHniH0HIft-KR2wDxmm3pa3tzGnTcwlgy2-hwWPkG0bB-8whD_LCNjFcTPA7330sbdDgi-vcQ9dfz-9Wv-ozi_Ofq5PzivHNZeVIhSMI31rDFW9lVzZorkvUjljogWqCNOCcio6oTRlwgmjpeprS2VHueR76NtL36Kg6Eu5GX1yMAw2QJxTQ3WtuWBUm4IevkPv4jyFsl2hjKplmUn_T9WkLhtpVaiDV2puR-iazeRHOy3NmwcFoC_Aox9g-VenpNm622z_u3l2t7n8dXH1fOJ_AV9Nlzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860617087</pqid></control><display><type>article</type><title>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Holinski, Alexandra ; Heyn, Kristina ; Merkl, Rainer ; Sterner, Reinhard</creator><creatorcontrib>Holinski, Alexandra ; Heyn, Kristina ; Merkl, Rainer ; Sterner, Reinhard</creatorcontrib><description>ABSTRACT It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25225</identifier><identifier>PMID: 27936490</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Amino acid sequence ; Amino acids ; Aminohydrolases - chemistry ; Aminohydrolases - genetics ; Aminohydrolases - metabolism ; Binding ; Binding Sites ; Biological Evolution ; Biosynthesis ; Cloning, Molecular ; Computer applications ; Enzymes ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fluorescence ; Gene Expression ; Glutaminase ; Glycerol ; HisF ; HisH ; Histidine ; Homology ; Imidazole ; imidazole glycerol phosphate synthase ; in silico mutagenesis ; Inspection ; Interfaces ; Macromolecules ; Metabolism ; Mutagenesis ; Mutation ; Phosphate ; Phosphates ; Phylogeny ; Protein Binding ; Protein Engineering ; Protein Folding ; Protein interaction ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Proteins ; protein–protein interaction ; Pyrobaculum - classification ; Pyrobaculum - enzymology ; Pyrobaculum - genetics ; Pyrobaculum arsenaticum ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Reconstruction ; Residues ; Site-directed mutagenesis ; Thermodynamics ; Thermotoga maritima - classification ; Thermotoga maritima - enzymology ; Thermotoga maritima - genetics ; Titration ; Zymomonas ; Zymomonas - classification ; Zymomonas - enzymology ; Zymomonas - genetics ; Zymomonas mobilis</subject><ispartof>Proteins, structure, function, and bioinformatics, 2017-02, Vol.85 (2), p.312-321</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27936490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holinski, Alexandra</creatorcontrib><creatorcontrib>Heyn, Kristina</creatorcontrib><creatorcontrib>Merkl, Rainer</creatorcontrib><creatorcontrib>Sterner, Reinhard</creatorcontrib><title>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>ABSTRACT It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.</description><subject>Affinity</subject><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Aminohydrolases - chemistry</subject><subject>Aminohydrolases - genetics</subject><subject>Aminohydrolases - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biological Evolution</subject><subject>Biosynthesis</subject><subject>Cloning, Molecular</subject><subject>Computer applications</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescence</subject><subject>Gene Expression</subject><subject>Glutaminase</subject><subject>Glycerol</subject><subject>HisF</subject><subject>HisH</subject><subject>Histidine</subject><subject>Homology</subject><subject>Imidazole</subject><subject>imidazole glycerol phosphate synthase</subject><subject>in silico mutagenesis</subject><subject>Inspection</subject><subject>Interfaces</subject><subject>Macromolecules</subject><subject>Metabolism</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Phylogeny</subject><subject>Protein Binding</subject><subject>Protein Engineering</subject><subject>Protein Folding</subject><subject>Protein interaction</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Secondary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>protein–protein interaction</subject><subject>Pyrobaculum - classification</subject><subject>Pyrobaculum - enzymology</subject><subject>Pyrobaculum - genetics</subject><subject>Pyrobaculum arsenaticum</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Reconstruction</subject><subject>Residues</subject><subject>Site-directed mutagenesis</subject><subject>Thermodynamics</subject><subject>Thermotoga maritima - classification</subject><subject>Thermotoga maritima - enzymology</subject><subject>Thermotoga maritima - genetics</subject><subject>Titration</subject><subject>Zymomonas</subject><subject>Zymomonas - classification</subject><subject>Zymomonas - enzymology</subject><subject>Zymomonas - genetics</subject><subject>Zymomonas mobilis</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kctO3TAQhq2KqpxCN30AZIlNNwFfY3uJjiithASqYB05zgQMiX2IHdF0yZPXh0sXLLoae-bzzPz-EfpKyRElhB1vppiPmGRMfkArSoyqCOViB62I1qriUstd9DmlO0JIbXj9Ce0yVaIwZIWe1nFsffDhBtvgIOXJDjjBwwzlhidwMZTc7LKPAT_6fIu308AH3EHyNwHniH0HIft-KR2wDxmm3pa3tzGnTcwlgy2-hwWPkG0bB-8whD_LCNjFcTPA7330sbdDgi-vcQ9dfz-9Wv-ozi_Ofq5PzivHNZeVIhSMI31rDFW9lVzZorkvUjljogWqCNOCcio6oTRlwgmjpeprS2VHueR76NtL36Kg6Eu5GX1yMAw2QJxTQ3WtuWBUm4IevkPv4jyFsl2hjKplmUn_T9WkLhtpVaiDV2puR-iazeRHOy3NmwcFoC_Aox9g-VenpNm622z_u3l2t7n8dXH1fOJ_AV9Nlzc</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Holinski, Alexandra</creator><creator>Heyn, Kristina</creator><creator>Merkl, Rainer</creator><creator>Sterner, Reinhard</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201702</creationdate><title>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</title><author>Holinski, Alexandra ; Heyn, Kristina ; Merkl, Rainer ; Sterner, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Aminohydrolases - chemistry</topic><topic>Aminohydrolases - genetics</topic><topic>Aminohydrolases - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biological Evolution</topic><topic>Biosynthesis</topic><topic>Cloning, Molecular</topic><topic>Computer applications</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescence</topic><topic>Gene Expression</topic><topic>Glutaminase</topic><topic>Glycerol</topic><topic>HisF</topic><topic>HisH</topic><topic>Histidine</topic><topic>Homology</topic><topic>Imidazole</topic><topic>imidazole glycerol phosphate synthase</topic><topic>in silico mutagenesis</topic><topic>Inspection</topic><topic>Interfaces</topic><topic>Macromolecules</topic><topic>Metabolism</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Phylogeny</topic><topic>Protein Binding</topic><topic>Protein Engineering</topic><topic>Protein Folding</topic><topic>Protein interaction</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Secondary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>protein–protein interaction</topic><topic>Pyrobaculum - classification</topic><topic>Pyrobaculum - enzymology</topic><topic>Pyrobaculum - genetics</topic><topic>Pyrobaculum arsenaticum</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Reconstruction</topic><topic>Residues</topic><topic>Site-directed mutagenesis</topic><topic>Thermodynamics</topic><topic>Thermotoga maritima - classification</topic><topic>Thermotoga maritima - enzymology</topic><topic>Thermotoga maritima - genetics</topic><topic>Titration</topic><topic>Zymomonas</topic><topic>Zymomonas - classification</topic><topic>Zymomonas - enzymology</topic><topic>Zymomonas - genetics</topic><topic>Zymomonas mobilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holinski, Alexandra</creatorcontrib><creatorcontrib>Heyn, Kristina</creatorcontrib><creatorcontrib>Merkl, Rainer</creatorcontrib><creatorcontrib>Sterner, Reinhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holinski, Alexandra</au><au>Heyn, Kristina</au><au>Merkl, Rainer</au><au>Sterner, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2017-02</date><risdate>2017</risdate><volume>85</volume><issue>2</issue><spage>312</spage><epage>321</epage><pages>312-321</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>ABSTRACT It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27936490</pmid><doi>10.1002/prot.25225</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2017-02, Vol.85 (2), p.312-321
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_1868342189
source Wiley-Blackwell Read & Publish Collection
subjects Affinity
Amino acid sequence
Amino acids
Aminohydrolases - chemistry
Aminohydrolases - genetics
Aminohydrolases - metabolism
Binding
Binding Sites
Biological Evolution
Biosynthesis
Cloning, Molecular
Computer applications
Enzymes
Escherichia coli - genetics
Escherichia coli - metabolism
Fluorescence
Gene Expression
Glutaminase
Glycerol
HisF
HisH
Histidine
Homology
Imidazole
imidazole glycerol phosphate synthase
in silico mutagenesis
Inspection
Interfaces
Macromolecules
Metabolism
Mutagenesis
Mutation
Phosphate
Phosphates
Phylogeny
Protein Binding
Protein Engineering
Protein Folding
Protein interaction
Protein Interaction Domains and Motifs
Protein Structure, Secondary
Protein Subunits - chemistry
Protein Subunits - genetics
Protein Subunits - metabolism
Proteins
protein–protein interaction
Pyrobaculum - classification
Pyrobaculum - enzymology
Pyrobaculum - genetics
Pyrobaculum arsenaticum
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Reconstruction
Residues
Site-directed mutagenesis
Thermodynamics
Thermotoga maritima - classification
Thermotoga maritima - enzymology
Thermotoga maritima - genetics
Titration
Zymomonas
Zymomonas - classification
Zymomonas - enzymology
Zymomonas - genetics
Zymomonas mobilis
title Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20ancestral%20sequence%20reconstruction%20with%20protein%20design%20to%20identify%20an%20interface%20hotspot%20in%20a%20key%20metabolic%20enzyme%20complex&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Holinski,%20Alexandra&rft.date=2017-02&rft.volume=85&rft.issue=2&rft.spage=312&rft.epage=321&rft.pages=312-321&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25225&rft_dat=%3Cproquest_pubme%3E1897653321%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1860617087&rft_id=info:pmid/27936490&rfr_iscdi=true