Loading…
Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex
ABSTRACT It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS)...
Saved in:
Published in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2017-02, Vol.85 (2), p.312-321 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353 |
---|---|
cites | |
container_end_page | 321 |
container_issue | 2 |
container_start_page | 312 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 85 |
creator | Holinski, Alexandra Heyn, Kristina Merkl, Rainer Sterner, Reinhard |
description | ABSTRACT
It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/prot.25225 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1868342189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897653321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353</originalsourceid><addsrcrecordid>eNp9kctO3TAQhq2KqpxCN30AZIlNNwFfY3uJjiithASqYB05zgQMiX2IHdF0yZPXh0sXLLoae-bzzPz-EfpKyRElhB1vppiPmGRMfkArSoyqCOViB62I1qriUstd9DmlO0JIbXj9Ce0yVaIwZIWe1nFsffDhBtvgIOXJDjjBwwzlhidwMZTc7LKPAT_6fIu308AH3EHyNwHniH0HIft-KR2wDxmm3pa3tzGnTcwlgy2-hwWPkG0bB-8whD_LCNjFcTPA7330sbdDgi-vcQ9dfz-9Wv-ozi_Ofq5PzivHNZeVIhSMI31rDFW9lVzZorkvUjljogWqCNOCcio6oTRlwgmjpeprS2VHueR76NtL36Kg6Eu5GX1yMAw2QJxTQ3WtuWBUm4IevkPv4jyFsl2hjKplmUn_T9WkLhtpVaiDV2puR-iazeRHOy3NmwcFoC_Aox9g-VenpNm622z_u3l2t7n8dXH1fOJ_AV9Nlzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860617087</pqid></control><display><type>article</type><title>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Holinski, Alexandra ; Heyn, Kristina ; Merkl, Rainer ; Sterner, Reinhard</creator><creatorcontrib>Holinski, Alexandra ; Heyn, Kristina ; Merkl, Rainer ; Sterner, Reinhard</creatorcontrib><description>ABSTRACT
It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25225</identifier><identifier>PMID: 27936490</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Amino acid sequence ; Amino acids ; Aminohydrolases - chemistry ; Aminohydrolases - genetics ; Aminohydrolases - metabolism ; Binding ; Binding Sites ; Biological Evolution ; Biosynthesis ; Cloning, Molecular ; Computer applications ; Enzymes ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fluorescence ; Gene Expression ; Glutaminase ; Glycerol ; HisF ; HisH ; Histidine ; Homology ; Imidazole ; imidazole glycerol phosphate synthase ; in silico mutagenesis ; Inspection ; Interfaces ; Macromolecules ; Metabolism ; Mutagenesis ; Mutation ; Phosphate ; Phosphates ; Phylogeny ; Protein Binding ; Protein Engineering ; Protein Folding ; Protein interaction ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Proteins ; protein–protein interaction ; Pyrobaculum - classification ; Pyrobaculum - enzymology ; Pyrobaculum - genetics ; Pyrobaculum arsenaticum ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Reconstruction ; Residues ; Site-directed mutagenesis ; Thermodynamics ; Thermotoga maritima - classification ; Thermotoga maritima - enzymology ; Thermotoga maritima - genetics ; Titration ; Zymomonas ; Zymomonas - classification ; Zymomonas - enzymology ; Zymomonas - genetics ; Zymomonas mobilis</subject><ispartof>Proteins, structure, function, and bioinformatics, 2017-02, Vol.85 (2), p.312-321</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27936490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holinski, Alexandra</creatorcontrib><creatorcontrib>Heyn, Kristina</creatorcontrib><creatorcontrib>Merkl, Rainer</creatorcontrib><creatorcontrib>Sterner, Reinhard</creatorcontrib><title>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>ABSTRACT
It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.</description><subject>Affinity</subject><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Aminohydrolases - chemistry</subject><subject>Aminohydrolases - genetics</subject><subject>Aminohydrolases - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biological Evolution</subject><subject>Biosynthesis</subject><subject>Cloning, Molecular</subject><subject>Computer applications</subject><subject>Enzymes</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fluorescence</subject><subject>Gene Expression</subject><subject>Glutaminase</subject><subject>Glycerol</subject><subject>HisF</subject><subject>HisH</subject><subject>Histidine</subject><subject>Homology</subject><subject>Imidazole</subject><subject>imidazole glycerol phosphate synthase</subject><subject>in silico mutagenesis</subject><subject>Inspection</subject><subject>Interfaces</subject><subject>Macromolecules</subject><subject>Metabolism</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Phosphate</subject><subject>Phosphates</subject><subject>Phylogeny</subject><subject>Protein Binding</subject><subject>Protein Engineering</subject><subject>Protein Folding</subject><subject>Protein interaction</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Secondary</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>protein–protein interaction</subject><subject>Pyrobaculum - classification</subject><subject>Pyrobaculum - enzymology</subject><subject>Pyrobaculum - genetics</subject><subject>Pyrobaculum arsenaticum</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Reconstruction</subject><subject>Residues</subject><subject>Site-directed mutagenesis</subject><subject>Thermodynamics</subject><subject>Thermotoga maritima - classification</subject><subject>Thermotoga maritima - enzymology</subject><subject>Thermotoga maritima - genetics</subject><subject>Titration</subject><subject>Zymomonas</subject><subject>Zymomonas - classification</subject><subject>Zymomonas - enzymology</subject><subject>Zymomonas - genetics</subject><subject>Zymomonas mobilis</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kctO3TAQhq2KqpxCN30AZIlNNwFfY3uJjiithASqYB05zgQMiX2IHdF0yZPXh0sXLLoae-bzzPz-EfpKyRElhB1vppiPmGRMfkArSoyqCOViB62I1qriUstd9DmlO0JIbXj9Ce0yVaIwZIWe1nFsffDhBtvgIOXJDjjBwwzlhidwMZTc7LKPAT_6fIu308AH3EHyNwHniH0HIft-KR2wDxmm3pa3tzGnTcwlgy2-hwWPkG0bB-8whD_LCNjFcTPA7330sbdDgi-vcQ9dfz-9Wv-ozi_Ofq5PzivHNZeVIhSMI31rDFW9lVzZorkvUjljogWqCNOCcio6oTRlwgmjpeprS2VHueR76NtL36Kg6Eu5GX1yMAw2QJxTQ3WtuWBUm4IevkPv4jyFsl2hjKplmUn_T9WkLhtpVaiDV2puR-iazeRHOy3NmwcFoC_Aox9g-VenpNm622z_u3l2t7n8dXH1fOJ_AV9Nlzc</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Holinski, Alexandra</creator><creator>Heyn, Kristina</creator><creator>Merkl, Rainer</creator><creator>Sterner, Reinhard</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201702</creationdate><title>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</title><author>Holinski, Alexandra ; Heyn, Kristina ; Merkl, Rainer ; Sterner, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Affinity</topic><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Aminohydrolases - chemistry</topic><topic>Aminohydrolases - genetics</topic><topic>Aminohydrolases - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biological Evolution</topic><topic>Biosynthesis</topic><topic>Cloning, Molecular</topic><topic>Computer applications</topic><topic>Enzymes</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fluorescence</topic><topic>Gene Expression</topic><topic>Glutaminase</topic><topic>Glycerol</topic><topic>HisF</topic><topic>HisH</topic><topic>Histidine</topic><topic>Homology</topic><topic>Imidazole</topic><topic>imidazole glycerol phosphate synthase</topic><topic>in silico mutagenesis</topic><topic>Inspection</topic><topic>Interfaces</topic><topic>Macromolecules</topic><topic>Metabolism</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Phosphate</topic><topic>Phosphates</topic><topic>Phylogeny</topic><topic>Protein Binding</topic><topic>Protein Engineering</topic><topic>Protein Folding</topic><topic>Protein interaction</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Secondary</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>protein–protein interaction</topic><topic>Pyrobaculum - classification</topic><topic>Pyrobaculum - enzymology</topic><topic>Pyrobaculum - genetics</topic><topic>Pyrobaculum arsenaticum</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Reconstruction</topic><topic>Residues</topic><topic>Site-directed mutagenesis</topic><topic>Thermodynamics</topic><topic>Thermotoga maritima - classification</topic><topic>Thermotoga maritima - enzymology</topic><topic>Thermotoga maritima - genetics</topic><topic>Titration</topic><topic>Zymomonas</topic><topic>Zymomonas - classification</topic><topic>Zymomonas - enzymology</topic><topic>Zymomonas - genetics</topic><topic>Zymomonas mobilis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holinski, Alexandra</creatorcontrib><creatorcontrib>Heyn, Kristina</creatorcontrib><creatorcontrib>Merkl, Rainer</creatorcontrib><creatorcontrib>Sterner, Reinhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holinski, Alexandra</au><au>Heyn, Kristina</au><au>Merkl, Rainer</au><au>Sterner, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2017-02</date><risdate>2017</risdate><volume>85</volume><issue>2</issue><spage>312</spage><epage>321</epage><pages>312-321</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>ABSTRACT
It is important to identify hotspot residues that determine protein–protein interactions in interfaces of macromolecular complexes. We have applied a combination of ancestral sequence reconstruction and protein design to identify hotspots within imidazole glycerol phosphate synthase (ImGPS). ImGPS is a key metabolic enzyme complex, which links histidine and de novo purine biosynthesis and consists of the cyclase subunit HisF and the glutaminase subunit HisH. Initial fluorescence titration experiments showed that HisH from Zymomonas mobilis (zmHisH) binds with high affinity to the reconstructed HisF from the last universal common ancestor (LUCA‐HisF) but not to HisF from Pyrobaculum arsenaticum (paHisF), which differ by 103 residues. Subsequent titration experiments with a reconstructed evolutionary intermediate linking LUCA‐HisF and paHisF and inspection of the subunit interface of a contemporary ImGPS allowed us to narrow down the differences crucial for zmHisH binding to nine amino acids of HisF. Homology modeling and in silico mutagenesis studies suggested that at most two of these nine HisF residues are crucial for zmHisH binding. These computational results were verified by experimental site‐directed mutagenesis, which finally enabled us to pinpoint a single amino acid residue in HisF that is decisive for high‐affinity binding of zmHisH. Our work shows that the identification of protein interface hotspots can be very efficient when reconstructed proteins with different binding properties are included in the analysis. Proteins 2017; 85:312–321. © 2016 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27936490</pmid><doi>10.1002/prot.25225</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2017-02, Vol.85 (2), p.312-321 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_1868342189 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Affinity Amino acid sequence Amino acids Aminohydrolases - chemistry Aminohydrolases - genetics Aminohydrolases - metabolism Binding Binding Sites Biological Evolution Biosynthesis Cloning, Molecular Computer applications Enzymes Escherichia coli - genetics Escherichia coli - metabolism Fluorescence Gene Expression Glutaminase Glycerol HisF HisH Histidine Homology Imidazole imidazole glycerol phosphate synthase in silico mutagenesis Inspection Interfaces Macromolecules Metabolism Mutagenesis Mutation Phosphate Phosphates Phylogeny Protein Binding Protein Engineering Protein Folding Protein interaction Protein Interaction Domains and Motifs Protein Structure, Secondary Protein Subunits - chemistry Protein Subunits - genetics Protein Subunits - metabolism Proteins protein–protein interaction Pyrobaculum - classification Pyrobaculum - enzymology Pyrobaculum - genetics Pyrobaculum arsenaticum Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Reconstruction Residues Site-directed mutagenesis Thermodynamics Thermotoga maritima - classification Thermotoga maritima - enzymology Thermotoga maritima - genetics Titration Zymomonas Zymomonas - classification Zymomonas - enzymology Zymomonas - genetics Zymomonas mobilis |
title | Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20ancestral%20sequence%20reconstruction%20with%20protein%20design%20to%20identify%20an%20interface%20hotspot%20in%20a%20key%20metabolic%20enzyme%20complex&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Holinski,%20Alexandra&rft.date=2017-02&rft.volume=85&rft.issue=2&rft.spage=312&rft.epage=321&rft.pages=312-321&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25225&rft_dat=%3Cproquest_pubme%3E1897653321%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3835-701e9c0fb9917fa537a252f0133224be1702841314d478124c49857f6a15d1353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1860617087&rft_id=info:pmid/27936490&rfr_iscdi=true |