Loading…

The Set2 Histone Methyltransferase Functions through the Phosphorylated Carboxyl-terminal Domain of RNA Polymerase II

The histone methyltransferase Set2, which specifically methylates lysine 36 of histone H3, has been shown to repress transcription upon tethering to a heterologous promoter. However, the mechanism of targeting and the consequence of Set2-dependent methylation have yet to be demonstrated. We sought t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2003-03, Vol.278 (11), p.8897-8903
Main Authors: Li, Bing, Howe, LeAnn, Anderson, Scott, Yates, 3rd, John R, Workman, Jerry L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The histone methyltransferase Set2, which specifically methylates lysine 36 of histone H3, has been shown to repress transcription upon tethering to a heterologous promoter. However, the mechanism of targeting and the consequence of Set2-dependent methylation have yet to be demonstrated. We sought to identify the protein components associated with Set2 to gain some insights into the in vivo function of this protein. Mass spectrometry analysis of the Set2 complex, purified using a tandem affinity method, revealed that RNA polymerase II (pol II) is associated with Set2. Immunoblotting and immunoprecipitation using antibodies against subunits of pol II confirmed that the phosphorylated form of pol II is indeed an integral part of the Set2 complex. Gst-Set2 preferentially binds to CTD synthetic peptides phosphorylated at serine 2, and to a lesser extent, serine 5 phosphorylated peptides, but has no affinity for unphosphorylated CTD, suggesting that Set2 associates with the elongating form of the pol II. Furthermore, we show that set2 Δ ppr2 Δ double mutants ( PPR2 encodes TFIIS, a transcription elongation factor) are synthetically hypersensitive to 6-azauracil, and that deletions in the CTD reduce in vivo levels of H3 lysine 36 methylation. Collectively, these results suggest that Set2 is involved in regulating transcription elongation through its direct contact with pol II.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M212134200