Loading…

Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization

•Dissecting the nuclear activity of an RNA bound to a genomic locus.•RNA-induced compaction or decondensation of chromatin.•RNA-interacting chromatin modifiers and epigenetic signaling.•Nuclear relocation of a genomic locus by RNA. Nuclear RNAs emerge as important factors to orchestrate the dynamic...

Full description

Saved in:
Bibliographic Details
Published in:Methods (San Diego, Calif.) Calif.), 2017-07, Vol.123, p.89-101
Main Authors: Pankert, Teresa, Jegou, Thibaud, Caudron-Herger, Maïwen, Rippe, Karsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-c2f55835590f8c96bab8208bfa83bb92be42a6c5b0414b31505d09557fb223343
cites cdi_FETCH-LOGICAL-c359t-c2f55835590f8c96bab8208bfa83bb92be42a6c5b0414b31505d09557fb223343
container_end_page 101
container_issue
container_start_page 89
container_title Methods (San Diego, Calif.)
container_volume 123
creator Pankert, Teresa
Jegou, Thibaud
Caudron-Herger, Maïwen
Rippe, Karsten
description •Dissecting the nuclear activity of an RNA bound to a genomic locus.•RNA-induced compaction or decondensation of chromatin.•RNA-interacting chromatin modifiers and epigenetic signaling.•Nuclear relocation of a genomic locus by RNA. Nuclear RNAs emerge as important factors to orchestrate the dynamic organization of the nucleus into functional subcompartments. By tethering RNAs to distinct genomic loci, RNA-dependent chromatin changes can be dissected by fluorescence microscopic analysis. Here we describe how this approach is implemented in mammalian cells. It involves two high-affinity protein-nucleic acid interactions that can be established with a number of different protein domains and DNA and RNA sequences. A prototypic system is described here in detail: It consists of the binding of MS2 bacteriophage coat protein to its RNA recognition sequence and the interaction between the bacterial LacI repressor protein to its target lacO operator DNA sequence. Via these interactions RNAs tagged with the MS2 recognition sequences can be recruited to a locus with integrated lacO repeats. By inducing RNA-chromatin binding a number of RNA-dependent activities can be dissected: (i) The RNA-induced compaction or decondensation of chromatin, (ii) identification of RNA-interacting chromatin modifiers that set epigenetic signals such as posttranslational histone modifications, and (iii) nuclear relocation of a genomic locus targeted by the tethered RNA. Thus, a variety of RNA-dependent activities can be evaluated with the MS2-LacI system, which are crucial for understanding how RNA shapes nuclear organization.
doi_str_mv 10.1016/j.ymeth.2017.01.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1869967575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202316304716</els_id><sourcerecordid>1869967575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c2f55835590f8c96bab8208bfa83bb92be42a6c5b0414b31505d09557fb223343</originalsourceid><addsrcrecordid>eNp9kEFP3DAQha0KVJZtf0GlykcuWcZ2nMQHDqtVW5AQSAiOlWU7NniVxIudIG1_PQ5LOSKNNHN482beh9APAisCpDrfrva9HZ9WFEi9ApILvqAFAcELQRgczXNZFRQoO0GnKW0BgNC6-YpOaEMJo7VYoL_32cJGPzziu5s1HgM2TzH0avQDdiFi100h2mTsYCzuvYkhmbDbY62SbbEaVLdPPuHg8DCZzqqIQ3xUg_-XHcLwDR071SX7_b0v0cPvX_eby-L69s_VZn1dGMbFWBjqOG8Y5wJcY0SllW4oNNqphmktqLYlVZXhGkpSakY48DbH5LXTlDJWsiU6O_juYniebBpl7_PPXacGG6YkSVMJUdW85lnKDtI5SorWyV30vYp7SUDOXOVWvnGVM1cJJBfkrZ_vBybd2_Zj5z_ILLg4CGyO-eJtlMn4GVrrozWjbIP_9MArq1CK5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869967575</pqid></control><display><type>article</type><title>Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Pankert, Teresa ; Jegou, Thibaud ; Caudron-Herger, Maïwen ; Rippe, Karsten</creator><creatorcontrib>Pankert, Teresa ; Jegou, Thibaud ; Caudron-Herger, Maïwen ; Rippe, Karsten</creatorcontrib><description>•Dissecting the nuclear activity of an RNA bound to a genomic locus.•RNA-induced compaction or decondensation of chromatin.•RNA-interacting chromatin modifiers and epigenetic signaling.•Nuclear relocation of a genomic locus by RNA. Nuclear RNAs emerge as important factors to orchestrate the dynamic organization of the nucleus into functional subcompartments. By tethering RNAs to distinct genomic loci, RNA-dependent chromatin changes can be dissected by fluorescence microscopic analysis. Here we describe how this approach is implemented in mammalian cells. It involves two high-affinity protein-nucleic acid interactions that can be established with a number of different protein domains and DNA and RNA sequences. A prototypic system is described here in detail: It consists of the binding of MS2 bacteriophage coat protein to its RNA recognition sequence and the interaction between the bacterial LacI repressor protein to its target lacO operator DNA sequence. Via these interactions RNAs tagged with the MS2 recognition sequences can be recruited to a locus with integrated lacO repeats. By inducing RNA-chromatin binding a number of RNA-dependent activities can be dissected: (i) The RNA-induced compaction or decondensation of chromatin, (ii) identification of RNA-interacting chromatin modifiers that set epigenetic signals such as posttranslational histone modifications, and (iii) nuclear relocation of a genomic locus targeted by the tethered RNA. Thus, a variety of RNA-dependent activities can be evaluated with the MS2-LacI system, which are crucial for understanding how RNA shapes nuclear organization.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2017.01.010</identifier><identifier>PMID: 28213279</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Binding Sites ; Capsid Proteins - genetics ; Capsid Proteins - metabolism ; Cell Line, Tumor ; Cell Nucleus - metabolism ; Cell Nucleus - ultrastructure ; Centromere - metabolism ; Centromere - ultrastructure ; Chromatin - chemistry ; Chromatin - metabolism ; Chromatin - ultrastructure ; Chromatin organization ; DNA - genetics ; DNA - metabolism ; Epigenesis, Genetic ; Epigenetic modifications ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fluorescence microscopy ; Humans ; Lac Operon ; Lac Repressors - genetics ; Lac Repressors - metabolism ; Levivirus - chemistry ; Levivirus - genetics ; Microscopy, Fluorescence - methods ; Mutagenesis, Insertional ; Nuclear architecture ; RNA - genetics ; RNA - metabolism ; RNA-protein interactions ; Telomere - metabolism ; Telomere - ultrastructure</subject><ispartof>Methods (San Diego, Calif.), 2017-07, Vol.123, p.89-101</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c2f55835590f8c96bab8208bfa83bb92be42a6c5b0414b31505d09557fb223343</citedby><cites>FETCH-LOGICAL-c359t-c2f55835590f8c96bab8208bfa83bb92be42a6c5b0414b31505d09557fb223343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28213279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pankert, Teresa</creatorcontrib><creatorcontrib>Jegou, Thibaud</creatorcontrib><creatorcontrib>Caudron-Herger, Maïwen</creatorcontrib><creatorcontrib>Rippe, Karsten</creatorcontrib><title>Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>•Dissecting the nuclear activity of an RNA bound to a genomic locus.•RNA-induced compaction or decondensation of chromatin.•RNA-interacting chromatin modifiers and epigenetic signaling.•Nuclear relocation of a genomic locus by RNA. Nuclear RNAs emerge as important factors to orchestrate the dynamic organization of the nucleus into functional subcompartments. By tethering RNAs to distinct genomic loci, RNA-dependent chromatin changes can be dissected by fluorescence microscopic analysis. Here we describe how this approach is implemented in mammalian cells. It involves two high-affinity protein-nucleic acid interactions that can be established with a number of different protein domains and DNA and RNA sequences. A prototypic system is described here in detail: It consists of the binding of MS2 bacteriophage coat protein to its RNA recognition sequence and the interaction between the bacterial LacI repressor protein to its target lacO operator DNA sequence. Via these interactions RNAs tagged with the MS2 recognition sequences can be recruited to a locus with integrated lacO repeats. By inducing RNA-chromatin binding a number of RNA-dependent activities can be dissected: (i) The RNA-induced compaction or decondensation of chromatin, (ii) identification of RNA-interacting chromatin modifiers that set epigenetic signals such as posttranslational histone modifications, and (iii) nuclear relocation of a genomic locus targeted by the tethered RNA. Thus, a variety of RNA-dependent activities can be evaluated with the MS2-LacI system, which are crucial for understanding how RNA shapes nuclear organization.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Capsid Proteins - genetics</subject><subject>Capsid Proteins - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - ultrastructure</subject><subject>Centromere - metabolism</subject><subject>Centromere - ultrastructure</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>Chromatin - ultrastructure</subject><subject>Chromatin organization</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetic modifications</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence microscopy</subject><subject>Humans</subject><subject>Lac Operon</subject><subject>Lac Repressors - genetics</subject><subject>Lac Repressors - metabolism</subject><subject>Levivirus - chemistry</subject><subject>Levivirus - genetics</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Mutagenesis, Insertional</subject><subject>Nuclear architecture</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>RNA-protein interactions</subject><subject>Telomere - metabolism</subject><subject>Telomere - ultrastructure</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP3DAQha0KVJZtf0GlykcuWcZ2nMQHDqtVW5AQSAiOlWU7NniVxIudIG1_PQ5LOSKNNHN482beh9APAisCpDrfrva9HZ9WFEi9ApILvqAFAcELQRgczXNZFRQoO0GnKW0BgNC6-YpOaEMJo7VYoL_32cJGPzziu5s1HgM2TzH0avQDdiFi100h2mTsYCzuvYkhmbDbY62SbbEaVLdPPuHg8DCZzqqIQ3xUg_-XHcLwDR071SX7_b0v0cPvX_eby-L69s_VZn1dGMbFWBjqOG8Y5wJcY0SllW4oNNqphmktqLYlVZXhGkpSakY48DbH5LXTlDJWsiU6O_juYniebBpl7_PPXacGG6YkSVMJUdW85lnKDtI5SorWyV30vYp7SUDOXOVWvnGVM1cJJBfkrZ_vBybd2_Zj5z_ILLg4CGyO-eJtlMn4GVrrozWjbIP_9MArq1CK5g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Pankert, Teresa</creator><creator>Jegou, Thibaud</creator><creator>Caudron-Herger, Maïwen</creator><creator>Rippe, Karsten</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization</title><author>Pankert, Teresa ; Jegou, Thibaud ; Caudron-Herger, Maïwen ; Rippe, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c2f55835590f8c96bab8208bfa83bb92be42a6c5b0414b31505d09557fb223343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Capsid Proteins - genetics</topic><topic>Capsid Proteins - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - ultrastructure</topic><topic>Centromere - metabolism</topic><topic>Centromere - ultrastructure</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>Chromatin - ultrastructure</topic><topic>Chromatin organization</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetic modifications</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence microscopy</topic><topic>Humans</topic><topic>Lac Operon</topic><topic>Lac Repressors - genetics</topic><topic>Lac Repressors - metabolism</topic><topic>Levivirus - chemistry</topic><topic>Levivirus - genetics</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Mutagenesis, Insertional</topic><topic>Nuclear architecture</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>RNA-protein interactions</topic><topic>Telomere - metabolism</topic><topic>Telomere - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pankert, Teresa</creatorcontrib><creatorcontrib>Jegou, Thibaud</creatorcontrib><creatorcontrib>Caudron-Herger, Maïwen</creatorcontrib><creatorcontrib>Rippe, Karsten</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pankert, Teresa</au><au>Jegou, Thibaud</au><au>Caudron-Herger, Maïwen</au><au>Rippe, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>123</volume><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>•Dissecting the nuclear activity of an RNA bound to a genomic locus.•RNA-induced compaction or decondensation of chromatin.•RNA-interacting chromatin modifiers and epigenetic signaling.•Nuclear relocation of a genomic locus by RNA. Nuclear RNAs emerge as important factors to orchestrate the dynamic organization of the nucleus into functional subcompartments. By tethering RNAs to distinct genomic loci, RNA-dependent chromatin changes can be dissected by fluorescence microscopic analysis. Here we describe how this approach is implemented in mammalian cells. It involves two high-affinity protein-nucleic acid interactions that can be established with a number of different protein domains and DNA and RNA sequences. A prototypic system is described here in detail: It consists of the binding of MS2 bacteriophage coat protein to its RNA recognition sequence and the interaction between the bacterial LacI repressor protein to its target lacO operator DNA sequence. Via these interactions RNAs tagged with the MS2 recognition sequences can be recruited to a locus with integrated lacO repeats. By inducing RNA-chromatin binding a number of RNA-dependent activities can be dissected: (i) The RNA-induced compaction or decondensation of chromatin, (ii) identification of RNA-interacting chromatin modifiers that set epigenetic signals such as posttranslational histone modifications, and (iii) nuclear relocation of a genomic locus targeted by the tethered RNA. Thus, a variety of RNA-dependent activities can be evaluated with the MS2-LacI system, which are crucial for understanding how RNA shapes nuclear organization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28213279</pmid><doi>10.1016/j.ymeth.2017.01.010</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2017-07, Vol.123, p.89-101
issn 1046-2023
1095-9130
language eng
recordid cdi_proquest_miscellaneous_1869967575
source ScienceDirect Freedom Collection 2022-2024
subjects Animals
Binding Sites
Capsid Proteins - genetics
Capsid Proteins - metabolism
Cell Line, Tumor
Cell Nucleus - metabolism
Cell Nucleus - ultrastructure
Centromere - metabolism
Centromere - ultrastructure
Chromatin - chemistry
Chromatin - metabolism
Chromatin - ultrastructure
Chromatin organization
DNA - genetics
DNA - metabolism
Epigenesis, Genetic
Epigenetic modifications
Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fluorescence microscopy
Humans
Lac Operon
Lac Repressors - genetics
Lac Repressors - metabolism
Levivirus - chemistry
Levivirus - genetics
Microscopy, Fluorescence - methods
Mutagenesis, Insertional
Nuclear architecture
RNA - genetics
RNA - metabolism
RNA-protein interactions
Telomere - metabolism
Telomere - ultrastructure
title Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tethering%20RNA%20to%20chromatin%20for%20fluorescence%20microscopy%20based%20analysis%20of%20nuclear%20organization&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Pankert,%20Teresa&rft.date=2017-07-01&rft.volume=123&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2017.01.010&rft_dat=%3Cproquest_cross%3E1869967575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-c2f55835590f8c96bab8208bfa83bb92be42a6c5b0414b31505d09557fb223343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1869967575&rft_id=info:pmid/28213279&rfr_iscdi=true