Loading…
Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms
Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a chal...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2017-04, Vol.64 (4), p.735-742 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3 |
container_end_page | 742 |
container_issue | 4 |
container_start_page | 735 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 64 |
creator | Corrado, Cesare Whitaker, John Chubb, Henry Williams, Steven Wright, Matthew Gill, Jaswinder O'Neill, Mark D. Niederer, Steven A. |
description | Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable |
doi_str_mv | 10.1109/TBME.2016.2574619 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1869969842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7480861</ieee_id><sourcerecordid>1869969842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWj9-gAiy4MXL1kw22U2OWusHKHrQk4eQJhNd2W1q0hXqr3dLq4inYZjnfWEeQg6BDgGoOnu6uB8PGYVyyETFS1AbZABCyJyJAjbJgFKQuWKK75DdlN77lUtebpMdJhmtCgkD8vKIMYWpaeovdNl9cNikLPjspmvNNDufx9o02bhBO49h9rZIdWjC6yK7xFh_9oGrGNpsPHXBmuj-oK_RtGmfbHnTJDxYzz3yfDV-Gt3kdw_Xt6Pzu9xyIec5-IqCBymtp0A5KuGUE35iHBbSMhSiFBNrYCKMq3xZVNz3AFLlwXLqXLFHTle9sxg-Okxz3dbJYtOYKYYuaZClUqWSnPXoyT_0PXSxfz9pBhUvmGBV0VOwomwMKUX0ehbr1sSFBqqX5vXSvF6a12vzfeZ43dxNWnS_iR_VPXC0AmpE_D1XXFJZQvENv7eIMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174325273</pqid></control><display><type>article</type><title>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</title><source>IEEE Xplore All Conference Series</source><creator>Corrado, Cesare ; Whitaker, John ; Chubb, Henry ; Williams, Steven ; Wright, Matthew ; Gill, Jaswinder ; O'Neill, Mark D. ; Niederer, Steven A.</creator><creatorcontrib>Corrado, Cesare ; Whitaker, John ; Chubb, Henry ; Williams, Steven ; Wright, Matthew ; Gill, Jaswinder ; O'Neill, Mark D. ; Niederer, Steven A.</creatorcontrib><description>Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2016.2574619</identifier><identifier>PMID: 28207381</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Atria ; Atrial fibrillation (AF) ; Atrial Fibrillation - diagnosis ; Atrial Fibrillation - physiopathology ; Atrial Function ; Atrium ; Biological system modeling ; Body Surface Potential Mapping - methods ; catheter measurements ; Catheters ; computational model ; Computational modeling ; Computer applications ; Computer Simulation ; Conduction ; conduction velocity ; Customization ; Diagnosis, Computer-Assisted - methods ; Dimensional stability ; effective refractory periods ; Electric potential ; Electrodes ; electrograms ; Electrophysiologic Techniques, Cardiac - methods ; Electrophysiology ; Endocardium - physiopathology ; Errors ; Fibrillation ; Heart Conduction System - physiopathology ; Humans ; Mathematical models ; Measurement methods ; Medical instruments ; model personalization ; Models, Cardiovascular ; Numerical models ; Parameter estimation ; Parameter identification ; Parameterization ; Properties (attributes) ; Protocols ; Refractory period ; Reproducibility of Results ; restitution curves ; Sensitivity and Specificity ; Sheet modelling ; Tissues ; Two dimensional models ; Velocity</subject><ispartof>IEEE transactions on biomedical engineering, 2017-04, Vol.64 (4), p.735-742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</citedby><cites>FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</cites><orcidid>0000-0002-8914-8735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7480861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7480861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28207381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corrado, Cesare</creatorcontrib><creatorcontrib>Whitaker, John</creatorcontrib><creatorcontrib>Chubb, Henry</creatorcontrib><creatorcontrib>Williams, Steven</creatorcontrib><creatorcontrib>Wright, Matthew</creatorcontrib><creatorcontrib>Gill, Jaswinder</creatorcontrib><creatorcontrib>O'Neill, Mark D.</creatorcontrib><creatorcontrib>Niederer, Steven A.</creatorcontrib><title>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable</description><subject>Algorithms</subject><subject>Atria</subject><subject>Atrial fibrillation (AF)</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Atrial Function</subject><subject>Atrium</subject><subject>Biological system modeling</subject><subject>Body Surface Potential Mapping - methods</subject><subject>catheter measurements</subject><subject>Catheters</subject><subject>computational model</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Conduction</subject><subject>conduction velocity</subject><subject>Customization</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Dimensional stability</subject><subject>effective refractory periods</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>electrograms</subject><subject>Electrophysiologic Techniques, Cardiac - methods</subject><subject>Electrophysiology</subject><subject>Endocardium - physiopathology</subject><subject>Errors</subject><subject>Fibrillation</subject><subject>Heart Conduction System - physiopathology</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Measurement methods</subject><subject>Medical instruments</subject><subject>model personalization</subject><subject>Models, Cardiovascular</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameterization</subject><subject>Properties (attributes)</subject><subject>Protocols</subject><subject>Refractory period</subject><subject>Reproducibility of Results</subject><subject>restitution curves</subject><subject>Sensitivity and Specificity</subject><subject>Sheet modelling</subject><subject>Tissues</subject><subject>Two dimensional models</subject><subject>Velocity</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWj9-gAiy4MXL1kw22U2OWusHKHrQk4eQJhNd2W1q0hXqr3dLq4inYZjnfWEeQg6BDgGoOnu6uB8PGYVyyETFS1AbZABCyJyJAjbJgFKQuWKK75DdlN77lUtebpMdJhmtCgkD8vKIMYWpaeovdNl9cNikLPjspmvNNDufx9o02bhBO49h9rZIdWjC6yK7xFh_9oGrGNpsPHXBmuj-oK_RtGmfbHnTJDxYzz3yfDV-Gt3kdw_Xt6Pzu9xyIec5-IqCBymtp0A5KuGUE35iHBbSMhSiFBNrYCKMq3xZVNz3AFLlwXLqXLFHTle9sxg-Okxz3dbJYtOYKYYuaZClUqWSnPXoyT_0PXSxfz9pBhUvmGBV0VOwomwMKUX0ehbr1sSFBqqX5vXSvF6a12vzfeZ43dxNWnS_iR_VPXC0AmpE_D1XXFJZQvENv7eIMQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Corrado, Cesare</creator><creator>Whitaker, John</creator><creator>Chubb, Henry</creator><creator>Williams, Steven</creator><creator>Wright, Matthew</creator><creator>Gill, Jaswinder</creator><creator>O'Neill, Mark D.</creator><creator>Niederer, Steven A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8914-8735</orcidid></search><sort><creationdate>20170401</creationdate><title>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</title><author>Corrado, Cesare ; Whitaker, John ; Chubb, Henry ; Williams, Steven ; Wright, Matthew ; Gill, Jaswinder ; O'Neill, Mark D. ; Niederer, Steven A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atria</topic><topic>Atrial fibrillation (AF)</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Atrial Function</topic><topic>Atrium</topic><topic>Biological system modeling</topic><topic>Body Surface Potential Mapping - methods</topic><topic>catheter measurements</topic><topic>Catheters</topic><topic>computational model</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Conduction</topic><topic>conduction velocity</topic><topic>Customization</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Dimensional stability</topic><topic>effective refractory periods</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>electrograms</topic><topic>Electrophysiologic Techniques, Cardiac - methods</topic><topic>Electrophysiology</topic><topic>Endocardium - physiopathology</topic><topic>Errors</topic><topic>Fibrillation</topic><topic>Heart Conduction System - physiopathology</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Measurement methods</topic><topic>Medical instruments</topic><topic>model personalization</topic><topic>Models, Cardiovascular</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameterization</topic><topic>Properties (attributes)</topic><topic>Protocols</topic><topic>Refractory period</topic><topic>Reproducibility of Results</topic><topic>restitution curves</topic><topic>Sensitivity and Specificity</topic><topic>Sheet modelling</topic><topic>Tissues</topic><topic>Two dimensional models</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corrado, Cesare</creatorcontrib><creatorcontrib>Whitaker, John</creatorcontrib><creatorcontrib>Chubb, Henry</creatorcontrib><creatorcontrib>Williams, Steven</creatorcontrib><creatorcontrib>Wright, Matthew</creatorcontrib><creatorcontrib>Gill, Jaswinder</creatorcontrib><creatorcontrib>O'Neill, Mark D.</creatorcontrib><creatorcontrib>Niederer, Steven A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Corrado, Cesare</au><au>Whitaker, John</au><au>Chubb, Henry</au><au>Williams, Steven</au><au>Wright, Matthew</au><au>Gill, Jaswinder</au><au>O'Neill, Mark D.</au><au>Niederer, Steven A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>64</volume><issue>4</issue><spage>735</spage><epage>742</epage><pages>735-742</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28207381</pmid><doi>10.1109/TBME.2016.2574619</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8914-8735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2017-04, Vol.64 (4), p.735-742 |
issn | 0018-9294 1558-2531 |
language | eng |
recordid | cdi_proquest_miscellaneous_1869969842 |
source | IEEE Xplore All Conference Series |
subjects | Algorithms Atria Atrial fibrillation (AF) Atrial Fibrillation - diagnosis Atrial Fibrillation - physiopathology Atrial Function Atrium Biological system modeling Body Surface Potential Mapping - methods catheter measurements Catheters computational model Computational modeling Computer applications Computer Simulation Conduction conduction velocity Customization Diagnosis, Computer-Assisted - methods Dimensional stability effective refractory periods Electric potential Electrodes electrograms Electrophysiologic Techniques, Cardiac - methods Electrophysiology Endocardium - physiopathology Errors Fibrillation Heart Conduction System - physiopathology Humans Mathematical models Measurement methods Medical instruments model personalization Models, Cardiovascular Numerical models Parameter estimation Parameter identification Parameterization Properties (attributes) Protocols Refractory period Reproducibility of Results restitution curves Sensitivity and Specificity Sheet modelling Tissues Two dimensional models Velocity |
title | Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20Models%20of%20Human%20Atrial%20Electrophysiology%20Derived%20From%20Endocardial%20Electrograms&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Corrado,%20Cesare&rft.date=2017-04-01&rft.volume=64&rft.issue=4&rft.spage=735&rft.epage=742&rft.pages=735-742&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2016.2574619&rft_dat=%3Cproquest_CHZPO%3E1869969842%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174325273&rft_id=info:pmid/28207381&rft_ieee_id=7480861&rfr_iscdi=true |