Loading…

Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms

Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a chal...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2017-04, Vol.64 (4), p.735-742
Main Authors: Corrado, Cesare, Whitaker, John, Chubb, Henry, Williams, Steven, Wright, Matthew, Gill, Jaswinder, O'Neill, Mark D., Niederer, Steven A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3
cites cdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3
container_end_page 742
container_issue 4
container_start_page 735
container_title IEEE transactions on biomedical engineering
container_volume 64
creator Corrado, Cesare
Whitaker, John
Chubb, Henry
Williams, Steven
Wright, Matthew
Gill, Jaswinder
O'Neill, Mark D.
Niederer, Steven A.
description Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable
doi_str_mv 10.1109/TBME.2016.2574619
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1869969842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7480861</ieee_id><sourcerecordid>1869969842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWj9-gAiy4MXL1kw22U2OWusHKHrQk4eQJhNd2W1q0hXqr3dLq4inYZjnfWEeQg6BDgGoOnu6uB8PGYVyyETFS1AbZABCyJyJAjbJgFKQuWKK75DdlN77lUtebpMdJhmtCgkD8vKIMYWpaeovdNl9cNikLPjspmvNNDufx9o02bhBO49h9rZIdWjC6yK7xFh_9oGrGNpsPHXBmuj-oK_RtGmfbHnTJDxYzz3yfDV-Gt3kdw_Xt6Pzu9xyIec5-IqCBymtp0A5KuGUE35iHBbSMhSiFBNrYCKMq3xZVNz3AFLlwXLqXLFHTle9sxg-Okxz3dbJYtOYKYYuaZClUqWSnPXoyT_0PXSxfz9pBhUvmGBV0VOwomwMKUX0ehbr1sSFBqqX5vXSvF6a12vzfeZ43dxNWnS_iR_VPXC0AmpE_D1XXFJZQvENv7eIMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174325273</pqid></control><display><type>article</type><title>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</title><source>IEEE Xplore All Conference Series</source><creator>Corrado, Cesare ; Whitaker, John ; Chubb, Henry ; Williams, Steven ; Wright, Matthew ; Gill, Jaswinder ; O'Neill, Mark D. ; Niederer, Steven A.</creator><creatorcontrib>Corrado, Cesare ; Whitaker, John ; Chubb, Henry ; Williams, Steven ; Wright, Matthew ; Gill, Jaswinder ; O'Neill, Mark D. ; Niederer, Steven A.</creatorcontrib><description>Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2016.2574619</identifier><identifier>PMID: 28207381</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Atria ; Atrial fibrillation (AF) ; Atrial Fibrillation - diagnosis ; Atrial Fibrillation - physiopathology ; Atrial Function ; Atrium ; Biological system modeling ; Body Surface Potential Mapping - methods ; catheter measurements ; Catheters ; computational model ; Computational modeling ; Computer applications ; Computer Simulation ; Conduction ; conduction velocity ; Customization ; Diagnosis, Computer-Assisted - methods ; Dimensional stability ; effective refractory periods ; Electric potential ; Electrodes ; electrograms ; Electrophysiologic Techniques, Cardiac - methods ; Electrophysiology ; Endocardium - physiopathology ; Errors ; Fibrillation ; Heart Conduction System - physiopathology ; Humans ; Mathematical models ; Measurement methods ; Medical instruments ; model personalization ; Models, Cardiovascular ; Numerical models ; Parameter estimation ; Parameter identification ; Parameterization ; Properties (attributes) ; Protocols ; Refractory period ; Reproducibility of Results ; restitution curves ; Sensitivity and Specificity ; Sheet modelling ; Tissues ; Two dimensional models ; Velocity</subject><ispartof>IEEE transactions on biomedical engineering, 2017-04, Vol.64 (4), p.735-742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</citedby><cites>FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</cites><orcidid>0000-0002-8914-8735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7480861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7480861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28207381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corrado, Cesare</creatorcontrib><creatorcontrib>Whitaker, John</creatorcontrib><creatorcontrib>Chubb, Henry</creatorcontrib><creatorcontrib>Williams, Steven</creatorcontrib><creatorcontrib>Wright, Matthew</creatorcontrib><creatorcontrib>Gill, Jaswinder</creatorcontrib><creatorcontrib>O'Neill, Mark D.</creatorcontrib><creatorcontrib>Niederer, Steven A.</creatorcontrib><title>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable</description><subject>Algorithms</subject><subject>Atria</subject><subject>Atrial fibrillation (AF)</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Atrial Fibrillation - physiopathology</subject><subject>Atrial Function</subject><subject>Atrium</subject><subject>Biological system modeling</subject><subject>Body Surface Potential Mapping - methods</subject><subject>catheter measurements</subject><subject>Catheters</subject><subject>computational model</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Conduction</subject><subject>conduction velocity</subject><subject>Customization</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Dimensional stability</subject><subject>effective refractory periods</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>electrograms</subject><subject>Electrophysiologic Techniques, Cardiac - methods</subject><subject>Electrophysiology</subject><subject>Endocardium - physiopathology</subject><subject>Errors</subject><subject>Fibrillation</subject><subject>Heart Conduction System - physiopathology</subject><subject>Humans</subject><subject>Mathematical models</subject><subject>Measurement methods</subject><subject>Medical instruments</subject><subject>model personalization</subject><subject>Models, Cardiovascular</subject><subject>Numerical models</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Parameterization</subject><subject>Properties (attributes)</subject><subject>Protocols</subject><subject>Refractory period</subject><subject>Reproducibility of Results</subject><subject>restitution curves</subject><subject>Sensitivity and Specificity</subject><subject>Sheet modelling</subject><subject>Tissues</subject><subject>Two dimensional models</subject><subject>Velocity</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWj9-gAiy4MXL1kw22U2OWusHKHrQk4eQJhNd2W1q0hXqr3dLq4inYZjnfWEeQg6BDgGoOnu6uB8PGYVyyETFS1AbZABCyJyJAjbJgFKQuWKK75DdlN77lUtebpMdJhmtCgkD8vKIMYWpaeovdNl9cNikLPjspmvNNDufx9o02bhBO49h9rZIdWjC6yK7xFh_9oGrGNpsPHXBmuj-oK_RtGmfbHnTJDxYzz3yfDV-Gt3kdw_Xt6Pzu9xyIec5-IqCBymtp0A5KuGUE35iHBbSMhSiFBNrYCKMq3xZVNz3AFLlwXLqXLFHTle9sxg-Okxz3dbJYtOYKYYuaZClUqWSnPXoyT_0PXSxfz9pBhUvmGBV0VOwomwMKUX0ehbr1sSFBqqX5vXSvF6a12vzfeZ43dxNWnS_iR_VPXC0AmpE_D1XXFJZQvENv7eIMQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Corrado, Cesare</creator><creator>Whitaker, John</creator><creator>Chubb, Henry</creator><creator>Williams, Steven</creator><creator>Wright, Matthew</creator><creator>Gill, Jaswinder</creator><creator>O'Neill, Mark D.</creator><creator>Niederer, Steven A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8914-8735</orcidid></search><sort><creationdate>20170401</creationdate><title>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</title><author>Corrado, Cesare ; Whitaker, John ; Chubb, Henry ; Williams, Steven ; Wright, Matthew ; Gill, Jaswinder ; O'Neill, Mark D. ; Niederer, Steven A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atria</topic><topic>Atrial fibrillation (AF)</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Atrial Fibrillation - physiopathology</topic><topic>Atrial Function</topic><topic>Atrium</topic><topic>Biological system modeling</topic><topic>Body Surface Potential Mapping - methods</topic><topic>catheter measurements</topic><topic>Catheters</topic><topic>computational model</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Conduction</topic><topic>conduction velocity</topic><topic>Customization</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Dimensional stability</topic><topic>effective refractory periods</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>electrograms</topic><topic>Electrophysiologic Techniques, Cardiac - methods</topic><topic>Electrophysiology</topic><topic>Endocardium - physiopathology</topic><topic>Errors</topic><topic>Fibrillation</topic><topic>Heart Conduction System - physiopathology</topic><topic>Humans</topic><topic>Mathematical models</topic><topic>Measurement methods</topic><topic>Medical instruments</topic><topic>model personalization</topic><topic>Models, Cardiovascular</topic><topic>Numerical models</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Parameterization</topic><topic>Properties (attributes)</topic><topic>Protocols</topic><topic>Refractory period</topic><topic>Reproducibility of Results</topic><topic>restitution curves</topic><topic>Sensitivity and Specificity</topic><topic>Sheet modelling</topic><topic>Tissues</topic><topic>Two dimensional models</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corrado, Cesare</creatorcontrib><creatorcontrib>Whitaker, John</creatorcontrib><creatorcontrib>Chubb, Henry</creatorcontrib><creatorcontrib>Williams, Steven</creatorcontrib><creatorcontrib>Wright, Matthew</creatorcontrib><creatorcontrib>Gill, Jaswinder</creatorcontrib><creatorcontrib>O'Neill, Mark D.</creatorcontrib><creatorcontrib>Niederer, Steven A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Corrado, Cesare</au><au>Whitaker, John</au><au>Chubb, Henry</au><au>Williams, Steven</au><au>Wright, Matthew</au><au>Gill, Jaswinder</au><au>O'Neill, Mark D.</au><au>Niederer, Steven A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>64</volume><issue>4</issue><spage>735</spage><epage>742</epage><pages>735-742</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>Objective: Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods: We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s 1 -s 2 pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%. Results: We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance: We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28207381</pmid><doi>10.1109/TBME.2016.2574619</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8914-8735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2017-04, Vol.64 (4), p.735-742
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_1869969842
source IEEE Xplore All Conference Series
subjects Algorithms
Atria
Atrial fibrillation (AF)
Atrial Fibrillation - diagnosis
Atrial Fibrillation - physiopathology
Atrial Function
Atrium
Biological system modeling
Body Surface Potential Mapping - methods
catheter measurements
Catheters
computational model
Computational modeling
Computer applications
Computer Simulation
Conduction
conduction velocity
Customization
Diagnosis, Computer-Assisted - methods
Dimensional stability
effective refractory periods
Electric potential
Electrodes
electrograms
Electrophysiologic Techniques, Cardiac - methods
Electrophysiology
Endocardium - physiopathology
Errors
Fibrillation
Heart Conduction System - physiopathology
Humans
Mathematical models
Measurement methods
Medical instruments
model personalization
Models, Cardiovascular
Numerical models
Parameter estimation
Parameter identification
Parameterization
Properties (attributes)
Protocols
Refractory period
Reproducibility of Results
restitution curves
Sensitivity and Specificity
Sheet modelling
Tissues
Two dimensional models
Velocity
title Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20Models%20of%20Human%20Atrial%20Electrophysiology%20Derived%20From%20Endocardial%20Electrograms&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Corrado,%20Cesare&rft.date=2017-04-01&rft.volume=64&rft.issue=4&rft.spage=735&rft.epage=742&rft.pages=735-742&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2016.2574619&rft_dat=%3Cproquest_CHZPO%3E1869969842%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-1f701f188cf0104e95d9d5fbade38c2e5565bca1b5ad7f6374fd9de09f1c40dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174325273&rft_id=info:pmid/28207381&rft_ieee_id=7480861&rfr_iscdi=true