Loading…
Use of an in Situ Disulfide Cross-Linking Strategy To Map Proximities between Amino Acid Residues in Transmembrane Domains I and VII of the M sub(3) Muscarinic Acetylcholine Receptor
In this study, we employed an in situ disulfide cross-linking strategy to gain insight into the structure of the inactive and active state of the M sub(3) muscarinic acetylcholine receptor. Specifically, this study was designed to identify residues in TM I that are located in close to Cys532 (positi...
Saved in:
Published in: | Biochemistry (Easton) 2002-06, Vol.41 (24), p.7647-7658 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we employed an in situ disulfide cross-linking strategy to gain insight into the structure of the inactive and active state of the M sub(3) muscarinic acetylcholine receptor. Specifically, this study was designed to identify residues in TM I that are located in close to Cys532 (position 7.42), an endogenous cysteine residue present in the central portion of TM VII. Cysteine residues were substituted, one at a time, into 10 consecutive positions of TM I (Ala71-Val80) of a modified version of the M sub(3) muscarinic receptor that lacked most endogenous cysteine residues and contained a factor Xa cleavage site within the third intracellular loop. Following their expression in COS-7 cells, the 10 resulting cysteine mutant receptors were oxidized in their native membrane environment, either in the absence or in the presence of muscarinic ligands. Disulfide cross-link formation was monitored by examining changes in the electrophoretic mobility of oxidized and factor Xa-digested receptors on SDS gels. When molecular iodine was used as the oxidizing agent, the L77C receptor (position 1.42) was the only mutant receptor that displayed significant disulfide cross-linking, either in the absence or in the presence of muscarinic agonists or antagonists. On the other hand, when the Cu(II)-(1,10-phenanthroline) sub(3) complex served as the redox catalyst, muscarinic ligands inhibited disulfide cross-linking of the L77C receptor, probably because of impaired access of this relatively bulky oxidizing agent to the ligand binding crevice. The iodine cross-linking data suggest that M sub(3) muscarinic receptor activation is not associated with significant changes in the relative orientations of the outer and/or central segments of TM I and VII. In bovine rhodopsin, the residues present at the positions corresponding to Cys532 and Leu77 in the rat M sub(3) muscarinic receptor are not located directly adjacent to each other, raising the possibility that the relative orientations of TM I and VII are not identical among different class I GPCRs. Alternatively, dynamic protein backbone fluctuation may occur, enabling Cys532 to move within cross-linking distance of Leu77 (Cys77). |
---|---|
ISSN: | 0006-2960 |
DOI: | 10.1021/bi016029c |