Loading…

Syntaxin 1A Regulates ENaC via Domain-specific Interactions

The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na + absorption across the apical membranes of several absorptive epithelia. The rate of Na + absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Pr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2003-04, Vol.278 (15), p.12796-12804
Main Authors: Condliffe, Steven B, Carattino, Marcelo D, Frizzell, Raymond A, Zhang, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-69b61aaafb2c8e0baa896696812b61fe6b901f02afa3cb4396156f6e3a4b0bd63
cites cdi_FETCH-LOGICAL-c436t-69b61aaafb2c8e0baa896696812b61fe6b901f02afa3cb4396156f6e3a4b0bd63
container_end_page 12804
container_issue 15
container_start_page 12796
container_title The Journal of biological chemistry
container_volume 278
creator Condliffe, Steven B
Carattino, Marcelo D
Frizzell, Raymond A
Zhang, Hui
description The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na + absorption across the apical membranes of several absorptive epithelia. The rate of Na + absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Previous reports have implicated a role for the t-SNARE protein, syntaxin 1A (S1A), in the regulation of ENaC current (I Na ). In the present study, we examine the structure-function relations influencing S1A-ENaC interactions. In vitro pull-down assays demonstrated that S1A directly interacts with the C termini of the α-, β-, and γ-ENaC subunits but not with the N terminus of any ENaC subunit. The H3 domain of S1A is the critical motif mediating S1A-ENaC binding. Functional studies in ENaC expressing Xenopus oocytes revealed that deletion of the H3 domain of co-expressed S1A eliminated its inhibition of I Na , and acute injection of a GST-H3 fusion protein into ENaC expressing oocytes inhibited I Na to the same extent as S1A co-expression. In cell surface ENaC labeling experiments, reductions in plasma membrane ENaC accounted for the H3 domain inhibition of I Na . Individually substituting C terminus-truncated α-, β-, or γ-ENaC subunits for their wild-type counterparts reversed the S1A-induced inhibition of I Na , and oocytes expressing ENaC comprised of three C terminus-truncated subunits showed no S1A inhibition of I Na . C terminus truncation or disruption of the C terminus β-subunit PY motif increases I Na by interfering with ENaC endocytosis. In contrast to subunit truncation, a β-ENaC PY mutation did not relieve S1A inhibition of I Na , suggesting that S1A does not perturb Nedd4 interactions that lead to ENaC endocytosis/degradation. This study provides support for the concept that S1A inhibits ENaC-mediated Na + transport by decreasing cell surface channel number via direct protein-protein interactions at the ENaC C termini.
doi_str_mv 10.1074/jbc.M210772200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18706611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18706611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-69b61aaafb2c8e0baa896696812b61fe6b901f02afa3cb4396156f6e3a4b0bd63</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EoqWwMqIMiC3FZydOLKaqFKhUQOJDYrPOrt26apISJ0D_PUGtxC130vvcOzyEnAMdAs2S65U2w0fWnRljlB6QPtCcxzyFj0PSp5RBLFma98hJCCvaTSLhmPSApYJlWd4nN6_bssEfX0Ywil7sol1jY0M0ecJx9OUxuq0K9GUcNtZ45000LRtbo2l8VYZTcuRwHezZfg_I-93kbfwQz57vp-PRLDYJF00spBaAiE4zk1uqEXMphBQ5sC5wVmhJwVGGDrnRCZcCUuGE5ZhoqueCD8jVrndTV5-tDY0qfDB2vcbSVm1QkGdUCIAOHO5AU1ch1NapTe0LrLcKqPrTpTpd6l9X93Cxb251Yef_-N5PB1zugKVfLL99bZX2lVnaQrEsV5B2ZCYF_wWg_HDH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18706611</pqid></control><display><type>article</type><title>Syntaxin 1A Regulates ENaC via Domain-specific Interactions</title><source>Elsevier ScienceDirect Journals</source><creator>Condliffe, Steven B ; Carattino, Marcelo D ; Frizzell, Raymond A ; Zhang, Hui</creator><creatorcontrib>Condliffe, Steven B ; Carattino, Marcelo D ; Frizzell, Raymond A ; Zhang, Hui</creatorcontrib><description>The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na + absorption across the apical membranes of several absorptive epithelia. The rate of Na + absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Previous reports have implicated a role for the t-SNARE protein, syntaxin 1A (S1A), in the regulation of ENaC current (I Na ). In the present study, we examine the structure-function relations influencing S1A-ENaC interactions. In vitro pull-down assays demonstrated that S1A directly interacts with the C termini of the α-, β-, and γ-ENaC subunits but not with the N terminus of any ENaC subunit. The H3 domain of S1A is the critical motif mediating S1A-ENaC binding. Functional studies in ENaC expressing Xenopus oocytes revealed that deletion of the H3 domain of co-expressed S1A eliminated its inhibition of I Na , and acute injection of a GST-H3 fusion protein into ENaC expressing oocytes inhibited I Na to the same extent as S1A co-expression. In cell surface ENaC labeling experiments, reductions in plasma membrane ENaC accounted for the H3 domain inhibition of I Na . Individually substituting C terminus-truncated α-, β-, or γ-ENaC subunits for their wild-type counterparts reversed the S1A-induced inhibition of I Na , and oocytes expressing ENaC comprised of three C terminus-truncated subunits showed no S1A inhibition of I Na . C terminus truncation or disruption of the C terminus β-subunit PY motif increases I Na by interfering with ENaC endocytosis. In contrast to subunit truncation, a β-ENaC PY mutation did not relieve S1A inhibition of I Na , suggesting that S1A does not perturb Nedd4 interactions that lead to ENaC endocytosis/degradation. This study provides support for the concept that S1A inhibits ENaC-mediated Na + transport by decreasing cell surface channel number via direct protein-protein interactions at the ENaC C termini.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M210772200</identifier><identifier>PMID: 12562778</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Animals ; Antigens, Surface - physiology ; Binding Sites ; Cloning, Molecular ; Epithelial Sodium Channels ; Gene Expression Regulation - physiology ; Humans ; Kinetics ; Membrane Potentials ; Mice ; Nerve Tissue Proteins - physiology ; Oocytes - physiology ; Patch-Clamp Techniques ; Protein Subunits - metabolism ; Rats ; Recombinant Fusion Proteins - metabolism ; Recombinant Proteins - metabolism ; RNA, Complementary - genetics ; Sequence Deletion ; Sodium - metabolism ; Sodium Channels - genetics ; Sodium Channels - physiology ; Syntaxin 1 ; Transcription, Genetic</subject><ispartof>The Journal of biological chemistry, 2003-04, Vol.278 (15), p.12796-12804</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-69b61aaafb2c8e0baa896696812b61fe6b901f02afa3cb4396156f6e3a4b0bd63</citedby><cites>FETCH-LOGICAL-c436t-69b61aaafb2c8e0baa896696812b61fe6b901f02afa3cb4396156f6e3a4b0bd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12562778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Condliffe, Steven B</creatorcontrib><creatorcontrib>Carattino, Marcelo D</creatorcontrib><creatorcontrib>Frizzell, Raymond A</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><title>Syntaxin 1A Regulates ENaC via Domain-specific Interactions</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na + absorption across the apical membranes of several absorptive epithelia. The rate of Na + absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Previous reports have implicated a role for the t-SNARE protein, syntaxin 1A (S1A), in the regulation of ENaC current (I Na ). In the present study, we examine the structure-function relations influencing S1A-ENaC interactions. In vitro pull-down assays demonstrated that S1A directly interacts with the C termini of the α-, β-, and γ-ENaC subunits but not with the N terminus of any ENaC subunit. The H3 domain of S1A is the critical motif mediating S1A-ENaC binding. Functional studies in ENaC expressing Xenopus oocytes revealed that deletion of the H3 domain of co-expressed S1A eliminated its inhibition of I Na , and acute injection of a GST-H3 fusion protein into ENaC expressing oocytes inhibited I Na to the same extent as S1A co-expression. In cell surface ENaC labeling experiments, reductions in plasma membrane ENaC accounted for the H3 domain inhibition of I Na . Individually substituting C terminus-truncated α-, β-, or γ-ENaC subunits for their wild-type counterparts reversed the S1A-induced inhibition of I Na , and oocytes expressing ENaC comprised of three C terminus-truncated subunits showed no S1A inhibition of I Na . C terminus truncation or disruption of the C terminus β-subunit PY motif increases I Na by interfering with ENaC endocytosis. In contrast to subunit truncation, a β-ENaC PY mutation did not relieve S1A inhibition of I Na , suggesting that S1A does not perturb Nedd4 interactions that lead to ENaC endocytosis/degradation. This study provides support for the concept that S1A inhibits ENaC-mediated Na + transport by decreasing cell surface channel number via direct protein-protein interactions at the ENaC C termini.</description><subject>Animals</subject><subject>Antigens, Surface - physiology</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Epithelial Sodium Channels</subject><subject>Gene Expression Regulation - physiology</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Membrane Potentials</subject><subject>Mice</subject><subject>Nerve Tissue Proteins - physiology</subject><subject>Oocytes - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Protein Subunits - metabolism</subject><subject>Rats</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Complementary - genetics</subject><subject>Sequence Deletion</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - genetics</subject><subject>Sodium Channels - physiology</subject><subject>Syntaxin 1</subject><subject>Transcription, Genetic</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EoqWwMqIMiC3FZydOLKaqFKhUQOJDYrPOrt26apISJ0D_PUGtxC130vvcOzyEnAMdAs2S65U2w0fWnRljlB6QPtCcxzyFj0PSp5RBLFma98hJCCvaTSLhmPSApYJlWd4nN6_bssEfX0Ywil7sol1jY0M0ecJx9OUxuq0K9GUcNtZ45000LRtbo2l8VYZTcuRwHezZfg_I-93kbfwQz57vp-PRLDYJF00spBaAiE4zk1uqEXMphBQ5sC5wVmhJwVGGDrnRCZcCUuGE5ZhoqueCD8jVrndTV5-tDY0qfDB2vcbSVm1QkGdUCIAOHO5AU1ch1NapTe0LrLcKqPrTpTpd6l9X93Cxb251Yef_-N5PB1zugKVfLL99bZX2lVnaQrEsV5B2ZCYF_wWg_HDH</recordid><startdate>20030411</startdate><enddate>20030411</enddate><creator>Condliffe, Steven B</creator><creator>Carattino, Marcelo D</creator><creator>Frizzell, Raymond A</creator><creator>Zhang, Hui</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20030411</creationdate><title>Syntaxin 1A Regulates ENaC via Domain-specific Interactions</title><author>Condliffe, Steven B ; Carattino, Marcelo D ; Frizzell, Raymond A ; Zhang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-69b61aaafb2c8e0baa896696812b61fe6b901f02afa3cb4396156f6e3a4b0bd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Antigens, Surface - physiology</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Epithelial Sodium Channels</topic><topic>Gene Expression Regulation - physiology</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Membrane Potentials</topic><topic>Mice</topic><topic>Nerve Tissue Proteins - physiology</topic><topic>Oocytes - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Protein Subunits - metabolism</topic><topic>Rats</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Complementary - genetics</topic><topic>Sequence Deletion</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - genetics</topic><topic>Sodium Channels - physiology</topic><topic>Syntaxin 1</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Condliffe, Steven B</creatorcontrib><creatorcontrib>Carattino, Marcelo D</creatorcontrib><creatorcontrib>Frizzell, Raymond A</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Condliffe, Steven B</au><au>Carattino, Marcelo D</au><au>Frizzell, Raymond A</au><au>Zhang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntaxin 1A Regulates ENaC via Domain-specific Interactions</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2003-04-11</date><risdate>2003</risdate><volume>278</volume><issue>15</issue><spage>12796</spage><epage>12804</epage><pages>12796-12804</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na + absorption across the apical membranes of several absorptive epithelia. The rate of Na + absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Previous reports have implicated a role for the t-SNARE protein, syntaxin 1A (S1A), in the regulation of ENaC current (I Na ). In the present study, we examine the structure-function relations influencing S1A-ENaC interactions. In vitro pull-down assays demonstrated that S1A directly interacts with the C termini of the α-, β-, and γ-ENaC subunits but not with the N terminus of any ENaC subunit. The H3 domain of S1A is the critical motif mediating S1A-ENaC binding. Functional studies in ENaC expressing Xenopus oocytes revealed that deletion of the H3 domain of co-expressed S1A eliminated its inhibition of I Na , and acute injection of a GST-H3 fusion protein into ENaC expressing oocytes inhibited I Na to the same extent as S1A co-expression. In cell surface ENaC labeling experiments, reductions in plasma membrane ENaC accounted for the H3 domain inhibition of I Na . Individually substituting C terminus-truncated α-, β-, or γ-ENaC subunits for their wild-type counterparts reversed the S1A-induced inhibition of I Na , and oocytes expressing ENaC comprised of three C terminus-truncated subunits showed no S1A inhibition of I Na . C terminus truncation or disruption of the C terminus β-subunit PY motif increases I Na by interfering with ENaC endocytosis. In contrast to subunit truncation, a β-ENaC PY mutation did not relieve S1A inhibition of I Na , suggesting that S1A does not perturb Nedd4 interactions that lead to ENaC endocytosis/degradation. This study provides support for the concept that S1A inhibits ENaC-mediated Na + transport by decreasing cell surface channel number via direct protein-protein interactions at the ENaC C termini.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>12562778</pmid><doi>10.1074/jbc.M210772200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2003-04, Vol.278 (15), p.12796-12804
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_18706611
source Elsevier ScienceDirect Journals
subjects Animals
Antigens, Surface - physiology
Binding Sites
Cloning, Molecular
Epithelial Sodium Channels
Gene Expression Regulation - physiology
Humans
Kinetics
Membrane Potentials
Mice
Nerve Tissue Proteins - physiology
Oocytes - physiology
Patch-Clamp Techniques
Protein Subunits - metabolism
Rats
Recombinant Fusion Proteins - metabolism
Recombinant Proteins - metabolism
RNA, Complementary - genetics
Sequence Deletion
Sodium - metabolism
Sodium Channels - genetics
Sodium Channels - physiology
Syntaxin 1
Transcription, Genetic
title Syntaxin 1A Regulates ENaC via Domain-specific Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntaxin%201A%20Regulates%20ENaC%20via%20Domain-specific%20Interactions&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Condliffe,%20Steven%20B&rft.date=2003-04-11&rft.volume=278&rft.issue=15&rft.spage=12796&rft.epage=12804&rft.pages=12796-12804&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M210772200&rft_dat=%3Cproquest_cross%3E18706611%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-69b61aaafb2c8e0baa896696812b61fe6b901f02afa3cb4396156f6e3a4b0bd63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18706611&rft_id=info:pmid/12562778&rfr_iscdi=true