Loading…

Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected

Abstract It is known that cholesterol plays a key role for Mycobacterium tuberculosis ( Mtb ) adaptation and survival within the host, thus contributing to the establishment of dormancy. It has been extensively demonstrated that fatty acids are the main energy source of Mtb during infection and dorm...

Full description

Saved in:
Bibliographic Details
Published in:Tuberculosis (Edinburgh, Scotland) Scotland), 2017-03, Vol.103, p.1-9
Main Authors: Soto-Ramirez, Maria D, Aguilar-Ayala, Diana A, Garcia-Morales, Lazaro, Rodriguez-Peredo, Sofia M, Badillo-Lopez, Claudia, Rios-Muñiz, Diana E, Meza-Segura, Mario A, Rivera-Morales, Gelen Y, Leon-Solis, Lizbel, Cerna-Cortes, Jorge F, Rivera-Gutierrez, Sandra, Helguera-Repetto, Addy C, Gonzalez-y-Merchand, Jorge A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-729c9fb13ec41595b4ccbec0d840111d836ea0f7028f79574a5f3676067454af3
cites cdi_FETCH-LOGICAL-c505t-729c9fb13ec41595b4ccbec0d840111d836ea0f7028f79574a5f3676067454af3
container_end_page 9
container_issue
container_start_page 1
container_title Tuberculosis (Edinburgh, Scotland)
container_volume 103
creator Soto-Ramirez, Maria D
Aguilar-Ayala, Diana A
Garcia-Morales, Lazaro
Rodriguez-Peredo, Sofia M
Badillo-Lopez, Claudia
Rios-Muñiz, Diana E
Meza-Segura, Mario A
Rivera-Morales, Gelen Y
Leon-Solis, Lizbel
Cerna-Cortes, Jorge F
Rivera-Gutierrez, Sandra
Helguera-Repetto, Addy C
Gonzalez-y-Merchand, Jorge A
description Abstract It is known that cholesterol plays a key role for Mycobacterium tuberculosis ( Mtb ) adaptation and survival within the host, thus contributing to the establishment of dormancy. It has been extensively demonstrated that fatty acids are the main energy source of Mtb during infection and dormancy, and it has been proposed that these molecules are implicated in reactivation of bacilli from a dormant state. We used in vitro models to analyze Mtb gene expression during dormancy and reactivation when fatty acids and cholesterol are the unique carbon source in the media. Our results suggest that cholesterol might function as a signal to trigger Mtb expression of some genes required for stress protection earlier than the one induced by fatty acids alone, indicating that cholesterol is very favorable for its development. This process is so conducive that cholesterol-adapted bacilli can reactivate their growth after NRP2 dormancy state even 10 min post ventilation. Thus, we hypothesize that cholesterol is not only involved in Mtb dormancy but that it also plays a critical role for favorable and almost immediate reactivation from an in vitro long-lasting dormant state induced by hypoxia.
doi_str_mv 10.1016/j.tube.2016.12.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1872576423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1472979216302141</els_id><sourcerecordid>2084459564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-729c9fb13ec41595b4ccbec0d840111d836ea0f7028f79574a5f3676067454af3</originalsourceid><addsrcrecordid>eNp9kk2L1TAUhos4OB_6B1xIwI2bdpI0bVoQQS4zKoy4UMFdSNPTmVzTpCbthW787XPKHWcxC1c5hOe85-M9Wfaa0YJRVl_ui3npoOAYF4wXlIpn2RlrZJnzhv16jrGQPG9ly0-z85T2FEHa0BfZKW94KSmXZ9nf3V1wkGaIwZHJ6TURTZyOtxAJfgHpl2j9Lfm6mtBpg5xdRrLVjWZxIdlErCcHO8dA-hBH7c1KtO9JBKTtQc82eDLfaU-mCAcbluRWkpY0AYr1L7OTQbsErx7ei-zn9dWP3ef85tunL7uPN7mpaDXnkremHTpWghGsaqtOGNOBoX0jKGOsb8oaNB1wpGaQbSWFroayljWtpaiEHsqL7N1Rd4rhz4LzqtEmA85pD9iSwq3xStaCl4i-fYLuwxI9dqc4bYTA8rVAih8pE0NKEQY1RTvquCpG1eaO2qttS2pzRzGu0B1MevMgvXQj9I8p_-xA4P0RANzFwUJUyVjwBnobcV-qD_b_-h-epBtnvTXa_YYV0uMcTCVMUN-3-9jOg9Ul5Uyw8h6SOreN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084459564</pqid></control><display><type>article</type><title>Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected</title><source>Elsevier</source><creator>Soto-Ramirez, Maria D ; Aguilar-Ayala, Diana A ; Garcia-Morales, Lazaro ; Rodriguez-Peredo, Sofia M ; Badillo-Lopez, Claudia ; Rios-Muñiz, Diana E ; Meza-Segura, Mario A ; Rivera-Morales, Gelen Y ; Leon-Solis, Lizbel ; Cerna-Cortes, Jorge F ; Rivera-Gutierrez, Sandra ; Helguera-Repetto, Addy C ; Gonzalez-y-Merchand, Jorge A</creator><creatorcontrib>Soto-Ramirez, Maria D ; Aguilar-Ayala, Diana A ; Garcia-Morales, Lazaro ; Rodriguez-Peredo, Sofia M ; Badillo-Lopez, Claudia ; Rios-Muñiz, Diana E ; Meza-Segura, Mario A ; Rivera-Morales, Gelen Y ; Leon-Solis, Lizbel ; Cerna-Cortes, Jorge F ; Rivera-Gutierrez, Sandra ; Helguera-Repetto, Addy C ; Gonzalez-y-Merchand, Jorge A</creatorcontrib><description>Abstract It is known that cholesterol plays a key role for Mycobacterium tuberculosis ( Mtb ) adaptation and survival within the host, thus contributing to the establishment of dormancy. It has been extensively demonstrated that fatty acids are the main energy source of Mtb during infection and dormancy, and it has been proposed that these molecules are implicated in reactivation of bacilli from a dormant state. We used in vitro models to analyze Mtb gene expression during dormancy and reactivation when fatty acids and cholesterol are the unique carbon source in the media. Our results suggest that cholesterol might function as a signal to trigger Mtb expression of some genes required for stress protection earlier than the one induced by fatty acids alone, indicating that cholesterol is very favorable for its development. This process is so conducive that cholesterol-adapted bacilli can reactivate their growth after NRP2 dormancy state even 10 min post ventilation. Thus, we hypothesize that cholesterol is not only involved in Mtb dormancy but that it also plays a critical role for favorable and almost immediate reactivation from an in vitro long-lasting dormant state induced by hypoxia.</description><identifier>ISSN: 1472-9792</identifier><identifier>EISSN: 1873-281X</identifier><identifier>DOI: 10.1016/j.tube.2016.12.004</identifier><identifier>PMID: 28237027</identifier><language>eng</language><publisher>Scotland: Elsevier Ltd</publisher><subject>Activation ; Adaptation ; Bacilli ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Carbon sources ; Cholesterol ; Cholesterol - metabolism ; Dormancy ; Energy Metabolism ; Fatty acids ; Fatty Acids - metabolism ; Gene expression ; Gene Expression Regulation, Bacterial ; Hypoxia ; Infectious Disease ; Latent Tuberculosis - metabolism ; Latent Tuberculosis - microbiology ; Lipids ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - growth &amp; development ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis - pathogenicity ; Oxygen - metabolism ; Pulmonary/Respiratory ; Reactivation ; Signal Transduction ; Tuberculosis ; Ventilation ; Virulence</subject><ispartof>Tuberculosis (Edinburgh, Scotland), 2017-03, Vol.103, p.1-9</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-729c9fb13ec41595b4ccbec0d840111d836ea0f7028f79574a5f3676067454af3</citedby><cites>FETCH-LOGICAL-c505t-729c9fb13ec41595b4ccbec0d840111d836ea0f7028f79574a5f3676067454af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28237027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soto-Ramirez, Maria D</creatorcontrib><creatorcontrib>Aguilar-Ayala, Diana A</creatorcontrib><creatorcontrib>Garcia-Morales, Lazaro</creatorcontrib><creatorcontrib>Rodriguez-Peredo, Sofia M</creatorcontrib><creatorcontrib>Badillo-Lopez, Claudia</creatorcontrib><creatorcontrib>Rios-Muñiz, Diana E</creatorcontrib><creatorcontrib>Meza-Segura, Mario A</creatorcontrib><creatorcontrib>Rivera-Morales, Gelen Y</creatorcontrib><creatorcontrib>Leon-Solis, Lizbel</creatorcontrib><creatorcontrib>Cerna-Cortes, Jorge F</creatorcontrib><creatorcontrib>Rivera-Gutierrez, Sandra</creatorcontrib><creatorcontrib>Helguera-Repetto, Addy C</creatorcontrib><creatorcontrib>Gonzalez-y-Merchand, Jorge A</creatorcontrib><title>Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected</title><title>Tuberculosis (Edinburgh, Scotland)</title><addtitle>Tuberculosis (Edinb)</addtitle><description>Abstract It is known that cholesterol plays a key role for Mycobacterium tuberculosis ( Mtb ) adaptation and survival within the host, thus contributing to the establishment of dormancy. It has been extensively demonstrated that fatty acids are the main energy source of Mtb during infection and dormancy, and it has been proposed that these molecules are implicated in reactivation of bacilli from a dormant state. We used in vitro models to analyze Mtb gene expression during dormancy and reactivation when fatty acids and cholesterol are the unique carbon source in the media. Our results suggest that cholesterol might function as a signal to trigger Mtb expression of some genes required for stress protection earlier than the one induced by fatty acids alone, indicating that cholesterol is very favorable for its development. This process is so conducive that cholesterol-adapted bacilli can reactivate their growth after NRP2 dormancy state even 10 min post ventilation. Thus, we hypothesize that cholesterol is not only involved in Mtb dormancy but that it also plays a critical role for favorable and almost immediate reactivation from an in vitro long-lasting dormant state induced by hypoxia.</description><subject>Activation</subject><subject>Adaptation</subject><subject>Bacilli</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Carbon sources</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Dormancy</subject><subject>Energy Metabolism</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Hypoxia</subject><subject>Infectious Disease</subject><subject>Latent Tuberculosis - metabolism</subject><subject>Latent Tuberculosis - microbiology</subject><subject>Lipids</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Oxygen - metabolism</subject><subject>Pulmonary/Respiratory</subject><subject>Reactivation</subject><subject>Signal Transduction</subject><subject>Tuberculosis</subject><subject>Ventilation</subject><subject>Virulence</subject><issn>1472-9792</issn><issn>1873-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kk2L1TAUhos4OB_6B1xIwI2bdpI0bVoQQS4zKoy4UMFdSNPTmVzTpCbthW787XPKHWcxC1c5hOe85-M9Wfaa0YJRVl_ui3npoOAYF4wXlIpn2RlrZJnzhv16jrGQPG9ly0-z85T2FEHa0BfZKW94KSmXZ9nf3V1wkGaIwZHJ6TURTZyOtxAJfgHpl2j9Lfm6mtBpg5xdRrLVjWZxIdlErCcHO8dA-hBH7c1KtO9JBKTtQc82eDLfaU-mCAcbluRWkpY0AYr1L7OTQbsErx7ei-zn9dWP3ef85tunL7uPN7mpaDXnkremHTpWghGsaqtOGNOBoX0jKGOsb8oaNB1wpGaQbSWFroayljWtpaiEHsqL7N1Rd4rhz4LzqtEmA85pD9iSwq3xStaCl4i-fYLuwxI9dqc4bYTA8rVAih8pE0NKEQY1RTvquCpG1eaO2qttS2pzRzGu0B1MevMgvXQj9I8p_-xA4P0RANzFwUJUyVjwBnobcV-qD_b_-h-epBtnvTXa_YYV0uMcTCVMUN-3-9jOg9Ul5Uyw8h6SOreN</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Soto-Ramirez, Maria D</creator><creator>Aguilar-Ayala, Diana A</creator><creator>Garcia-Morales, Lazaro</creator><creator>Rodriguez-Peredo, Sofia M</creator><creator>Badillo-Lopez, Claudia</creator><creator>Rios-Muñiz, Diana E</creator><creator>Meza-Segura, Mario A</creator><creator>Rivera-Morales, Gelen Y</creator><creator>Leon-Solis, Lizbel</creator><creator>Cerna-Cortes, Jorge F</creator><creator>Rivera-Gutierrez, Sandra</creator><creator>Helguera-Repetto, Addy C</creator><creator>Gonzalez-y-Merchand, Jorge A</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20170301</creationdate><title>Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected</title><author>Soto-Ramirez, Maria D ; Aguilar-Ayala, Diana A ; Garcia-Morales, Lazaro ; Rodriguez-Peredo, Sofia M ; Badillo-Lopez, Claudia ; Rios-Muñiz, Diana E ; Meza-Segura, Mario A ; Rivera-Morales, Gelen Y ; Leon-Solis, Lizbel ; Cerna-Cortes, Jorge F ; Rivera-Gutierrez, Sandra ; Helguera-Repetto, Addy C ; Gonzalez-y-Merchand, Jorge A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-729c9fb13ec41595b4ccbec0d840111d836ea0f7028f79574a5f3676067454af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Adaptation</topic><topic>Bacilli</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Carbon sources</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Dormancy</topic><topic>Energy Metabolism</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Hypoxia</topic><topic>Infectious Disease</topic><topic>Latent Tuberculosis - metabolism</topic><topic>Latent Tuberculosis - microbiology</topic><topic>Lipids</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Oxygen - metabolism</topic><topic>Pulmonary/Respiratory</topic><topic>Reactivation</topic><topic>Signal Transduction</topic><topic>Tuberculosis</topic><topic>Ventilation</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto-Ramirez, Maria D</creatorcontrib><creatorcontrib>Aguilar-Ayala, Diana A</creatorcontrib><creatorcontrib>Garcia-Morales, Lazaro</creatorcontrib><creatorcontrib>Rodriguez-Peredo, Sofia M</creatorcontrib><creatorcontrib>Badillo-Lopez, Claudia</creatorcontrib><creatorcontrib>Rios-Muñiz, Diana E</creatorcontrib><creatorcontrib>Meza-Segura, Mario A</creatorcontrib><creatorcontrib>Rivera-Morales, Gelen Y</creatorcontrib><creatorcontrib>Leon-Solis, Lizbel</creatorcontrib><creatorcontrib>Cerna-Cortes, Jorge F</creatorcontrib><creatorcontrib>Rivera-Gutierrez, Sandra</creatorcontrib><creatorcontrib>Helguera-Repetto, Addy C</creatorcontrib><creatorcontrib>Gonzalez-y-Merchand, Jorge A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto-Ramirez, Maria D</au><au>Aguilar-Ayala, Diana A</au><au>Garcia-Morales, Lazaro</au><au>Rodriguez-Peredo, Sofia M</au><au>Badillo-Lopez, Claudia</au><au>Rios-Muñiz, Diana E</au><au>Meza-Segura, Mario A</au><au>Rivera-Morales, Gelen Y</au><au>Leon-Solis, Lizbel</au><au>Cerna-Cortes, Jorge F</au><au>Rivera-Gutierrez, Sandra</au><au>Helguera-Repetto, Addy C</au><au>Gonzalez-y-Merchand, Jorge A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected</atitle><jtitle>Tuberculosis (Edinburgh, Scotland)</jtitle><addtitle>Tuberculosis (Edinb)</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>103</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1472-9792</issn><eissn>1873-281X</eissn><abstract>Abstract It is known that cholesterol plays a key role for Mycobacterium tuberculosis ( Mtb ) adaptation and survival within the host, thus contributing to the establishment of dormancy. It has been extensively demonstrated that fatty acids are the main energy source of Mtb during infection and dormancy, and it has been proposed that these molecules are implicated in reactivation of bacilli from a dormant state. We used in vitro models to analyze Mtb gene expression during dormancy and reactivation when fatty acids and cholesterol are the unique carbon source in the media. Our results suggest that cholesterol might function as a signal to trigger Mtb expression of some genes required for stress protection earlier than the one induced by fatty acids alone, indicating that cholesterol is very favorable for its development. This process is so conducive that cholesterol-adapted bacilli can reactivate their growth after NRP2 dormancy state even 10 min post ventilation. Thus, we hypothesize that cholesterol is not only involved in Mtb dormancy but that it also plays a critical role for favorable and almost immediate reactivation from an in vitro long-lasting dormant state induced by hypoxia.</abstract><cop>Scotland</cop><pub>Elsevier Ltd</pub><pmid>28237027</pmid><doi>10.1016/j.tube.2016.12.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1472-9792
ispartof Tuberculosis (Edinburgh, Scotland), 2017-03, Vol.103, p.1-9
issn 1472-9792
1873-281X
language eng
recordid cdi_proquest_miscellaneous_1872576423
source Elsevier
subjects Activation
Adaptation
Bacilli
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Carbon sources
Cholesterol
Cholesterol - metabolism
Dormancy
Energy Metabolism
Fatty acids
Fatty Acids - metabolism
Gene expression
Gene Expression Regulation, Bacterial
Hypoxia
Infectious Disease
Latent Tuberculosis - metabolism
Latent Tuberculosis - microbiology
Lipids
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - growth & development
Mycobacterium tuberculosis - metabolism
Mycobacterium tuberculosis - pathogenicity
Oxygen - metabolism
Pulmonary/Respiratory
Reactivation
Signal Transduction
Tuberculosis
Ventilation
Virulence
title Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cholesterol%20plays%20a%20larger%20role%20during%20Mycobacterium%20tuberculosis%20in%20vitro%20dormancy%20and%20reactivation%20than%20previously%20suspected&rft.jtitle=Tuberculosis%20(Edinburgh,%20Scotland)&rft.au=Soto-Ramirez,%20Maria%20D&rft.date=2017-03-01&rft.volume=103&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1472-9792&rft.eissn=1873-281X&rft_id=info:doi/10.1016/j.tube.2016.12.004&rft_dat=%3Cproquest_cross%3E2084459564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-729c9fb13ec41595b4ccbec0d840111d836ea0f7028f79574a5f3676067454af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084459564&rft_id=info:pmid/28237027&rfr_iscdi=true