Loading…
XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes
The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CH...
Saved in:
Published in: | Molecular cell 2003-04, Vol.11 (4), p.1109-1117 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73 |
container_end_page | 1117 |
container_issue | 4 |
container_start_page | 1109 |
container_title | Molecular cell |
container_volume | 11 |
creator | Henry-Mowatt, Judith Jackson, Dean Masson, Jean-Yves Johnson, Penny A Clements, Paula M Benson, Fiona E Thompson, Larry H Takeda, Shunichi West, Stephen C Caldecott, Keith W |
description | The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and
XRCC3
−/−
chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized
XRCC3
−/−
cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes. |
doi_str_mv | 10.1016/S1097-2765(03)00132-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18744371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276503001321</els_id><sourcerecordid>18744371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VpGma5iRSXRUUZf28hTSZrtW2WZNW8N_b7i54FAIThuedYR6E9gk-IZgkp48ECx5GPGFHmB5jTGgUkg00XrZjksSb6_-AjNCO9x89FLNUbKMRiThJU8HG6PVtlmU0UI0JZsowEtxZ01WqhWAGi6rUqi1tE0yt-wwenJ078H5o9O9C1WoOJngB10Luhkj27mxtva3B76KtQlUe9tZ1gp6nl0_ZdXh7f3WTnd-GmjHehozniosIA1aJARMp0EakisdCFVFBIkhEmnBhEh33ZyiWiEjHBGgqKCjIOZ2gw9XchbNfHfhW1qXXUFWqAdt5SVIex5STHmQrUDvrvYNCLlxZK_cjCZaDUbk0KgddElO5NCqH3MF6QZfXYP5Sa4U9cLYCoD_zuwQnvS6h0WBKB7qVxpb_rPgFY1GFFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18744371</pqid></control><display><type>article</type><title>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Henry-Mowatt, Judith ; Jackson, Dean ; Masson, Jean-Yves ; Johnson, Penny A ; Clements, Paula M ; Benson, Fiona E ; Thompson, Larry H ; Takeda, Shunichi ; West, Stephen C ; Caldecott, Keith W</creator><creatorcontrib>Henry-Mowatt, Judith ; Jackson, Dean ; Masson, Jean-Yves ; Johnson, Penny A ; Clements, Paula M ; Benson, Fiona E ; Thompson, Larry H ; Takeda, Shunichi ; West, Stephen C ; Caldecott, Keith W</creatorcontrib><description>The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and
XRCC3
−/−
chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized
XRCC3
−/−
cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/S1097-2765(03)00132-1</identifier><identifier>PMID: 12718895</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Avian Proteins ; Chickens ; CHO Cells ; Chromosomes - genetics ; Cisplatin - pharmacology ; Cricetinae ; DNA Damage - drug effects ; DNA Damage - genetics ; DNA Damage - radiation effects ; DNA Repair - drug effects ; DNA Repair - genetics ; DNA Repair - radiation effects ; DNA Replication - drug effects ; DNA Replication - genetics ; DNA Replication - radiation effects ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - pharmacology ; Eukaryotic Cells - metabolism ; Rad51 Recombinase ; Recombinant Fusion Proteins - pharmacology ; Ultraviolet Rays</subject><ispartof>Molecular cell, 2003-04, Vol.11 (4), p.1109-1117</ispartof><rights>2003 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</citedby><cites>FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12718895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry-Mowatt, Judith</creatorcontrib><creatorcontrib>Jackson, Dean</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Johnson, Penny A</creatorcontrib><creatorcontrib>Clements, Paula M</creatorcontrib><creatorcontrib>Benson, Fiona E</creatorcontrib><creatorcontrib>Thompson, Larry H</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>West, Stephen C</creatorcontrib><creatorcontrib>Caldecott, Keith W</creatorcontrib><title>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and
XRCC3
−/−
chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized
XRCC3
−/−
cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes.</description><subject>Animals</subject><subject>Avian Proteins</subject><subject>Chickens</subject><subject>CHO Cells</subject><subject>Chromosomes - genetics</subject><subject>Cisplatin - pharmacology</subject><subject>Cricetinae</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - genetics</subject><subject>DNA Damage - radiation effects</subject><subject>DNA Repair - drug effects</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - radiation effects</subject><subject>DNA Replication - drug effects</subject><subject>DNA Replication - genetics</subject><subject>DNA Replication - radiation effects</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - pharmacology</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Rad51 Recombinase</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Ultraviolet Rays</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VpGma5iRSXRUUZf28hTSZrtW2WZNW8N_b7i54FAIThuedYR6E9gk-IZgkp48ECx5GPGFHmB5jTGgUkg00XrZjksSb6_-AjNCO9x89FLNUbKMRiThJU8HG6PVtlmU0UI0JZsowEtxZ01WqhWAGi6rUqi1tE0yt-wwenJ078H5o9O9C1WoOJngB10Luhkj27mxtva3B76KtQlUe9tZ1gp6nl0_ZdXh7f3WTnd-GmjHehozniosIA1aJARMp0EakisdCFVFBIkhEmnBhEh33ZyiWiEjHBGgqKCjIOZ2gw9XchbNfHfhW1qXXUFWqAdt5SVIex5STHmQrUDvrvYNCLlxZK_cjCZaDUbk0KgddElO5NCqH3MF6QZfXYP5Sa4U9cLYCoD_zuwQnvS6h0WBKB7qVxpb_rPgFY1GFFg</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Henry-Mowatt, Judith</creator><creator>Jackson, Dean</creator><creator>Masson, Jean-Yves</creator><creator>Johnson, Penny A</creator><creator>Clements, Paula M</creator><creator>Benson, Fiona E</creator><creator>Thompson, Larry H</creator><creator>Takeda, Shunichi</creator><creator>West, Stephen C</creator><creator>Caldecott, Keith W</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20030401</creationdate><title>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</title><author>Henry-Mowatt, Judith ; Jackson, Dean ; Masson, Jean-Yves ; Johnson, Penny A ; Clements, Paula M ; Benson, Fiona E ; Thompson, Larry H ; Takeda, Shunichi ; West, Stephen C ; Caldecott, Keith W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Avian Proteins</topic><topic>Chickens</topic><topic>CHO Cells</topic><topic>Chromosomes - genetics</topic><topic>Cisplatin - pharmacology</topic><topic>Cricetinae</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - genetics</topic><topic>DNA Damage - radiation effects</topic><topic>DNA Repair - drug effects</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - radiation effects</topic><topic>DNA Replication - drug effects</topic><topic>DNA Replication - genetics</topic><topic>DNA Replication - radiation effects</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - pharmacology</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Rad51 Recombinase</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry-Mowatt, Judith</creatorcontrib><creatorcontrib>Jackson, Dean</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Johnson, Penny A</creatorcontrib><creatorcontrib>Clements, Paula M</creatorcontrib><creatorcontrib>Benson, Fiona E</creatorcontrib><creatorcontrib>Thompson, Larry H</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>West, Stephen C</creatorcontrib><creatorcontrib>Caldecott, Keith W</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry-Mowatt, Judith</au><au>Jackson, Dean</au><au>Masson, Jean-Yves</au><au>Johnson, Penny A</au><au>Clements, Paula M</au><au>Benson, Fiona E</au><au>Thompson, Larry H</au><au>Takeda, Shunichi</au><au>West, Stephen C</au><au>Caldecott, Keith W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>11</volume><issue>4</issue><spage>1109</spage><epage>1117</epage><pages>1109-1117</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and
XRCC3
−/−
chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized
XRCC3
−/−
cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12718895</pmid><doi>10.1016/S1097-2765(03)00132-1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2003-04, Vol.11 (4), p.1109-1117 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_18744371 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Animals Avian Proteins Chickens CHO Cells Chromosomes - genetics Cisplatin - pharmacology Cricetinae DNA Damage - drug effects DNA Damage - genetics DNA Damage - radiation effects DNA Repair - drug effects DNA Repair - genetics DNA Repair - radiation effects DNA Replication - drug effects DNA Replication - genetics DNA Replication - radiation effects DNA-Binding Proteins - deficiency DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism DNA-Binding Proteins - pharmacology Eukaryotic Cells - metabolism Rad51 Recombinase Recombinant Fusion Proteins - pharmacology Ultraviolet Rays |
title | XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XRCC3%20and%20Rad51%20Modulate%20Replication%20Fork%20Progression%20on%20Damaged%20Vertebrate%20Chromosomes&rft.jtitle=Molecular%20cell&rft.au=Henry-Mowatt,%20Judith&rft.date=2003-04-01&rft.volume=11&rft.issue=4&rft.spage=1109&rft.epage=1117&rft.pages=1109-1117&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/S1097-2765(03)00132-1&rft_dat=%3Cproquest_cross%3E18744371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18744371&rft_id=info:pmid/12718895&rfr_iscdi=true |