Loading…

XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes

The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CH...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell 2003-04, Vol.11 (4), p.1109-1117
Main Authors: Henry-Mowatt, Judith, Jackson, Dean, Masson, Jean-Yves, Johnson, Penny A, Clements, Paula M, Benson, Fiona E, Thompson, Larry H, Takeda, Shunichi, West, Stephen C, Caldecott, Keith W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73
cites cdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73
container_end_page 1117
container_issue 4
container_start_page 1109
container_title Molecular cell
container_volume 11
creator Henry-Mowatt, Judith
Jackson, Dean
Masson, Jean-Yves
Johnson, Penny A
Clements, Paula M
Benson, Fiona E
Thompson, Larry H
Takeda, Shunichi
West, Stephen C
Caldecott, Keith W
description The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and XRCC3 −/− chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized XRCC3 −/− cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes.
doi_str_mv 10.1016/S1097-2765(03)00132-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18744371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276503001321</els_id><sourcerecordid>18744371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VpGma5iRSXRUUZf28hTSZrtW2WZNW8N_b7i54FAIThuedYR6E9gk-IZgkp48ECx5GPGFHmB5jTGgUkg00XrZjksSb6_-AjNCO9x89FLNUbKMRiThJU8HG6PVtlmU0UI0JZsowEtxZ01WqhWAGi6rUqi1tE0yt-wwenJ078H5o9O9C1WoOJngB10Luhkj27mxtva3B76KtQlUe9tZ1gp6nl0_ZdXh7f3WTnd-GmjHehozniosIA1aJARMp0EakisdCFVFBIkhEmnBhEh33ZyiWiEjHBGgqKCjIOZ2gw9XchbNfHfhW1qXXUFWqAdt5SVIex5STHmQrUDvrvYNCLlxZK_cjCZaDUbk0KgddElO5NCqH3MF6QZfXYP5Sa4U9cLYCoD_zuwQnvS6h0WBKB7qVxpb_rPgFY1GFFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18744371</pqid></control><display><type>article</type><title>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Henry-Mowatt, Judith ; Jackson, Dean ; Masson, Jean-Yves ; Johnson, Penny A ; Clements, Paula M ; Benson, Fiona E ; Thompson, Larry H ; Takeda, Shunichi ; West, Stephen C ; Caldecott, Keith W</creator><creatorcontrib>Henry-Mowatt, Judith ; Jackson, Dean ; Masson, Jean-Yves ; Johnson, Penny A ; Clements, Paula M ; Benson, Fiona E ; Thompson, Larry H ; Takeda, Shunichi ; West, Stephen C ; Caldecott, Keith W</creatorcontrib><description>The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and XRCC3 −/− chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized XRCC3 −/− cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/S1097-2765(03)00132-1</identifier><identifier>PMID: 12718895</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Avian Proteins ; Chickens ; CHO Cells ; Chromosomes - genetics ; Cisplatin - pharmacology ; Cricetinae ; DNA Damage - drug effects ; DNA Damage - genetics ; DNA Damage - radiation effects ; DNA Repair - drug effects ; DNA Repair - genetics ; DNA Repair - radiation effects ; DNA Replication - drug effects ; DNA Replication - genetics ; DNA Replication - radiation effects ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-Binding Proteins - pharmacology ; Eukaryotic Cells - metabolism ; Rad51 Recombinase ; Recombinant Fusion Proteins - pharmacology ; Ultraviolet Rays</subject><ispartof>Molecular cell, 2003-04, Vol.11 (4), p.1109-1117</ispartof><rights>2003 Cell Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</citedby><cites>FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12718895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry-Mowatt, Judith</creatorcontrib><creatorcontrib>Jackson, Dean</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Johnson, Penny A</creatorcontrib><creatorcontrib>Clements, Paula M</creatorcontrib><creatorcontrib>Benson, Fiona E</creatorcontrib><creatorcontrib>Thompson, Larry H</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>West, Stephen C</creatorcontrib><creatorcontrib>Caldecott, Keith W</creatorcontrib><title>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and XRCC3 −/− chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized XRCC3 −/− cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes.</description><subject>Animals</subject><subject>Avian Proteins</subject><subject>Chickens</subject><subject>CHO Cells</subject><subject>Chromosomes - genetics</subject><subject>Cisplatin - pharmacology</subject><subject>Cricetinae</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - genetics</subject><subject>DNA Damage - radiation effects</subject><subject>DNA Repair - drug effects</subject><subject>DNA Repair - genetics</subject><subject>DNA Repair - radiation effects</subject><subject>DNA Replication - drug effects</subject><subject>DNA Replication - genetics</subject><subject>DNA Replication - radiation effects</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-Binding Proteins - pharmacology</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Rad51 Recombinase</subject><subject>Recombinant Fusion Proteins - pharmacology</subject><subject>Ultraviolet Rays</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VpGma5iRSXRUUZf28hTSZrtW2WZNW8N_b7i54FAIThuedYR6E9gk-IZgkp48ECx5GPGFHmB5jTGgUkg00XrZjksSb6_-AjNCO9x89FLNUbKMRiThJU8HG6PVtlmU0UI0JZsowEtxZ01WqhWAGi6rUqi1tE0yt-wwenJ078H5o9O9C1WoOJngB10Luhkj27mxtva3B76KtQlUe9tZ1gp6nl0_ZdXh7f3WTnd-GmjHehozniosIA1aJARMp0EakisdCFVFBIkhEmnBhEh33ZyiWiEjHBGgqKCjIOZ2gw9XchbNfHfhW1qXXUFWqAdt5SVIex5STHmQrUDvrvYNCLlxZK_cjCZaDUbk0KgddElO5NCqH3MF6QZfXYP5Sa4U9cLYCoD_zuwQnvS6h0WBKB7qVxpb_rPgFY1GFFg</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Henry-Mowatt, Judith</creator><creator>Jackson, Dean</creator><creator>Masson, Jean-Yves</creator><creator>Johnson, Penny A</creator><creator>Clements, Paula M</creator><creator>Benson, Fiona E</creator><creator>Thompson, Larry H</creator><creator>Takeda, Shunichi</creator><creator>West, Stephen C</creator><creator>Caldecott, Keith W</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20030401</creationdate><title>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</title><author>Henry-Mowatt, Judith ; Jackson, Dean ; Masson, Jean-Yves ; Johnson, Penny A ; Clements, Paula M ; Benson, Fiona E ; Thompson, Larry H ; Takeda, Shunichi ; West, Stephen C ; Caldecott, Keith W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Avian Proteins</topic><topic>Chickens</topic><topic>CHO Cells</topic><topic>Chromosomes - genetics</topic><topic>Cisplatin - pharmacology</topic><topic>Cricetinae</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - genetics</topic><topic>DNA Damage - radiation effects</topic><topic>DNA Repair - drug effects</topic><topic>DNA Repair - genetics</topic><topic>DNA Repair - radiation effects</topic><topic>DNA Replication - drug effects</topic><topic>DNA Replication - genetics</topic><topic>DNA Replication - radiation effects</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-Binding Proteins - pharmacology</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Rad51 Recombinase</topic><topic>Recombinant Fusion Proteins - pharmacology</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry-Mowatt, Judith</creatorcontrib><creatorcontrib>Jackson, Dean</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Johnson, Penny A</creatorcontrib><creatorcontrib>Clements, Paula M</creatorcontrib><creatorcontrib>Benson, Fiona E</creatorcontrib><creatorcontrib>Thompson, Larry H</creatorcontrib><creatorcontrib>Takeda, Shunichi</creatorcontrib><creatorcontrib>West, Stephen C</creatorcontrib><creatorcontrib>Caldecott, Keith W</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry-Mowatt, Judith</au><au>Jackson, Dean</au><au>Masson, Jean-Yves</au><au>Johnson, Penny A</au><au>Clements, Paula M</au><au>Benson, Fiona E</au><au>Thompson, Larry H</au><au>Takeda, Shunichi</au><au>West, Stephen C</au><au>Caldecott, Keith W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>11</volume><issue>4</issue><spage>1109</spage><epage>1117</epage><pages>1109-1117</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The mechanisms by which the progression of eukaryotic replication forks is controlled after DNA damage are unclear. We have found that fork progression is slowed by cisplatin or UV treatment in intact vertebrate cells and in replication assays in vitro. Fork slowing is reduced or absent in irs1SF CHO cells and XRCC3 −/− chicken DT40 cells, indicating that fork slowing is an active process that requires the homologous recombination protein XRCC3. The addition of purified human Rad51C-XRCC3 complex restores fork slowing in permeabilized XRCC3 −/− cells. Moreover, the requirement for XRCC3 for fork slowing can be circumvented by addition of human Rad51. These data demonstrate that the recombination proteins XRCC3 and Rad51 cooperatively modulate the progression of replication forks on damaged vertebrate chromosomes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12718895</pmid><doi>10.1016/S1097-2765(03)00132-1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2003-04, Vol.11 (4), p.1109-1117
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_18744371
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Avian Proteins
Chickens
CHO Cells
Chromosomes - genetics
Cisplatin - pharmacology
Cricetinae
DNA Damage - drug effects
DNA Damage - genetics
DNA Damage - radiation effects
DNA Repair - drug effects
DNA Repair - genetics
DNA Repair - radiation effects
DNA Replication - drug effects
DNA Replication - genetics
DNA Replication - radiation effects
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - pharmacology
Eukaryotic Cells - metabolism
Rad51 Recombinase
Recombinant Fusion Proteins - pharmacology
Ultraviolet Rays
title XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XRCC3%20and%20Rad51%20Modulate%20Replication%20Fork%20Progression%20on%20Damaged%20Vertebrate%20Chromosomes&rft.jtitle=Molecular%20cell&rft.au=Henry-Mowatt,%20Judith&rft.date=2003-04-01&rft.volume=11&rft.issue=4&rft.spage=1109&rft.epage=1117&rft.pages=1109-1117&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/S1097-2765(03)00132-1&rft_dat=%3Cproquest_cross%3E18744371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-57ba7920e0a6ded2aecd98a749af2f12e698679d6c4765a5692c41e3893eaeb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18744371&rft_id=info:pmid/12718895&rfr_iscdi=true