Loading…
Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process
This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variatio...
Saved in:
Published in: | Archives of microbiology 2017-07, Vol.199 (5), p.757-766 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3 |
container_end_page | 766 |
container_issue | 5 |
container_start_page | 757 |
container_title | Archives of microbiology |
container_volume | 199 |
creator | Xiao, Yunhua Liu, Xueduan Dong, Weiling Liang, Yili Niu, Jiaojiao Gu, Yabing Ma, Liyuan Hao, Xiaodong Zhang, Xian Xu, Zhen Yin, Huaqun |
description | This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including
Acidithiobacillus caldus
S1,
Sulfobacillus thermosulfidooxidans
ST and
Leptospirillum ferriphilum
YSK, and one archaea,
Ferroplasma thermophilum
L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example,
A. caldus
(above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by
L. ferriphilum
(above 60%) in CP and CS groups; at the final stage,
L. ferriphilum
dominated C group, while
F. thermophilum
dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe
3+
and H
+
, which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it. |
doi_str_mv | 10.1007/s00203-017-1342-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1874783480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874783480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</originalsourceid><addsrcrecordid>eNp1kc-K1TAUxoMoznX0AdxIwY2LqZ786W26lGEchQE3Cu5Cenoyk6FtYtKC9xV8anNvRxFBssg55Pd9J8nH2EsObzlA-y4DCJA18LbmUom6e8R2XElRQyu-PWY7kCBq3Ul5xp7lfA_Ahdb6KTsTWuyBq2bHfl45R7jkKrgqHpJfqLLzUOV4Z0c6tWGuYojraBdfSgxTDNkf63xRDYfZTh7zSYMhRkoV_ViSxRNMznn0NOOh8kVaLAuzDel9GMninZ9vq5gCUs7P2RNnx0wvHvZz9vXD1ZfLj_XN5-tPl-9vapStWOpG2KFHKi_BRrYEg3KKGmkb2ypuFfa8_AVXVgnuOnRa76UGRN6AHUj0KM_Zm823zP2-Ul7M5DPSONqZwpoN161qtVQaCvr6H_Q-rGkutzO8A70vq-kKxTcKU8g5kTMx-cmmg-FgjkGZLShTgjLHoMxR8-rBee0nGv4ofidTALEBuRzNt5T-Gv1f11_HcqDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908686859</pqid></control><display><type>article</type><title>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</title><source>Springer Nature</source><creator>Xiao, Yunhua ; Liu, Xueduan ; Dong, Weiling ; Liang, Yili ; Niu, Jiaojiao ; Gu, Yabing ; Ma, Liyuan ; Hao, Xiaodong ; Zhang, Xian ; Xu, Zhen ; Yin, Huaqun</creator><creatorcontrib>Xiao, Yunhua ; Liu, Xueduan ; Dong, Weiling ; Liang, Yili ; Niu, Jiaojiao ; Gu, Yabing ; Ma, Liyuan ; Hao, Xiaodong ; Zhang, Xian ; Xu, Zhen ; Yin, Huaqun</creatorcontrib><description>This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including
Acidithiobacillus caldus
S1,
Sulfobacillus thermosulfidooxidans
ST and
Leptospirillum ferriphilum
YSK, and one archaea,
Ferroplasma thermophilum
L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example,
A. caldus
(above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by
L. ferriphilum
(above 60%) in CP and CS groups; at the final stage,
L. ferriphilum
dominated C group, while
F. thermophilum
dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe
3+
and H
+
, which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-017-1342-9</identifier><identifier>PMID: 28260145</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acidithiobacillus - classification ; Acidithiobacillus - metabolism ; Archaea ; Archaea - classification ; Archaea - metabolism ; Bacteria ; Bacterial leaching ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Chalcopyrite ; Clostridiales - classification ; Clostridiales - metabolism ; Communities ; Community composition ; Community structure ; Composition effects ; Copper ; Copper - chemistry ; Dominant species ; Dynamic structural analysis ; Dynamics ; Ecology ; Efficiency ; Extraction ; Heavy metal content ; Iron ; Iron - chemistry ; Leaching ; Leptospiraceae - classification ; Leptospiraceae - metabolism ; Life Sciences ; Microbial Consortia - physiology ; Microbial Ecology ; Microbiology ; Microorganisms ; Original Paper ; Polymerase chain reaction ; Pyrite ; Redox potential ; Sphalerite ; Sulfides - chemistry ; Thermophilic bacteria ; Zinc Compounds - chemistry ; Zincblende</subject><ispartof>Archives of microbiology, 2017-07, Vol.199 (5), p.757-766</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Archives of Microbiology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</citedby><cites>FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28260145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yunhua</creatorcontrib><creatorcontrib>Liu, Xueduan</creatorcontrib><creatorcontrib>Dong, Weiling</creatorcontrib><creatorcontrib>Liang, Yili</creatorcontrib><creatorcontrib>Niu, Jiaojiao</creatorcontrib><creatorcontrib>Gu, Yabing</creatorcontrib><creatorcontrib>Ma, Liyuan</creatorcontrib><creatorcontrib>Hao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Yin, Huaqun</creatorcontrib><title>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including
Acidithiobacillus caldus
S1,
Sulfobacillus thermosulfidooxidans
ST and
Leptospirillum ferriphilum
YSK, and one archaea,
Ferroplasma thermophilum
L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example,
A. caldus
(above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by
L. ferriphilum
(above 60%) in CP and CS groups; at the final stage,
L. ferriphilum
dominated C group, while
F. thermophilum
dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe
3+
and H
+
, which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.</description><subject>Acidithiobacillus - classification</subject><subject>Acidithiobacillus - metabolism</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - metabolism</subject><subject>Bacteria</subject><subject>Bacterial leaching</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chalcopyrite</subject><subject>Clostridiales - classification</subject><subject>Clostridiales - metabolism</subject><subject>Communities</subject><subject>Community composition</subject><subject>Community structure</subject><subject>Composition effects</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Dominant species</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Ecology</subject><subject>Efficiency</subject><subject>Extraction</subject><subject>Heavy metal content</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Leaching</subject><subject>Leptospiraceae - classification</subject><subject>Leptospiraceae - metabolism</subject><subject>Life Sciences</subject><subject>Microbial Consortia - physiology</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Original Paper</subject><subject>Polymerase chain reaction</subject><subject>Pyrite</subject><subject>Redox potential</subject><subject>Sphalerite</subject><subject>Sulfides - chemistry</subject><subject>Thermophilic bacteria</subject><subject>Zinc Compounds - chemistry</subject><subject>Zincblende</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc-K1TAUxoMoznX0AdxIwY2LqZ786W26lGEchQE3Cu5Cenoyk6FtYtKC9xV8anNvRxFBssg55Pd9J8nH2EsObzlA-y4DCJA18LbmUom6e8R2XElRQyu-PWY7kCBq3Ul5xp7lfA_Ahdb6KTsTWuyBq2bHfl45R7jkKrgqHpJfqLLzUOV4Z0c6tWGuYojraBdfSgxTDNkf63xRDYfZTh7zSYMhRkoV_ViSxRNMznn0NOOh8kVaLAuzDel9GMninZ9vq5gCUs7P2RNnx0wvHvZz9vXD1ZfLj_XN5-tPl-9vapStWOpG2KFHKi_BRrYEg3KKGmkb2ypuFfa8_AVXVgnuOnRa76UGRN6AHUj0KM_Zm823zP2-Ul7M5DPSONqZwpoN161qtVQaCvr6H_Q-rGkutzO8A70vq-kKxTcKU8g5kTMx-cmmg-FgjkGZLShTgjLHoMxR8-rBee0nGv4ofidTALEBuRzNt5T-Gv1f11_HcqDs</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Xiao, Yunhua</creator><creator>Liu, Xueduan</creator><creator>Dong, Weiling</creator><creator>Liang, Yili</creator><creator>Niu, Jiaojiao</creator><creator>Gu, Yabing</creator><creator>Ma, Liyuan</creator><creator>Hao, Xiaodong</creator><creator>Zhang, Xian</creator><creator>Xu, Zhen</creator><creator>Yin, Huaqun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</title><author>Xiao, Yunhua ; Liu, Xueduan ; Dong, Weiling ; Liang, Yili ; Niu, Jiaojiao ; Gu, Yabing ; Ma, Liyuan ; Hao, Xiaodong ; Zhang, Xian ; Xu, Zhen ; Yin, Huaqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidithiobacillus - classification</topic><topic>Acidithiobacillus - metabolism</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - metabolism</topic><topic>Bacteria</topic><topic>Bacterial leaching</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chalcopyrite</topic><topic>Clostridiales - classification</topic><topic>Clostridiales - metabolism</topic><topic>Communities</topic><topic>Community composition</topic><topic>Community structure</topic><topic>Composition effects</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Dominant species</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Ecology</topic><topic>Efficiency</topic><topic>Extraction</topic><topic>Heavy metal content</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Leaching</topic><topic>Leptospiraceae - classification</topic><topic>Leptospiraceae - metabolism</topic><topic>Life Sciences</topic><topic>Microbial Consortia - physiology</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Original Paper</topic><topic>Polymerase chain reaction</topic><topic>Pyrite</topic><topic>Redox potential</topic><topic>Sphalerite</topic><topic>Sulfides - chemistry</topic><topic>Thermophilic bacteria</topic><topic>Zinc Compounds - chemistry</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yunhua</creatorcontrib><creatorcontrib>Liu, Xueduan</creatorcontrib><creatorcontrib>Dong, Weiling</creatorcontrib><creatorcontrib>Liang, Yili</creatorcontrib><creatorcontrib>Niu, Jiaojiao</creatorcontrib><creatorcontrib>Gu, Yabing</creatorcontrib><creatorcontrib>Ma, Liyuan</creatorcontrib><creatorcontrib>Hao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Yin, Huaqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yunhua</au><au>Liu, Xueduan</au><au>Dong, Weiling</au><au>Liang, Yili</au><au>Niu, Jiaojiao</au><au>Gu, Yabing</au><au>Ma, Liyuan</au><au>Hao, Xiaodong</au><au>Zhang, Xian</au><au>Xu, Zhen</au><au>Yin, Huaqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>199</volume><issue>5</issue><spage>757</spage><epage>766</epage><pages>757-766</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including
Acidithiobacillus caldus
S1,
Sulfobacillus thermosulfidooxidans
ST and
Leptospirillum ferriphilum
YSK, and one archaea,
Ferroplasma thermophilum
L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example,
A. caldus
(above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by
L. ferriphilum
(above 60%) in CP and CS groups; at the final stage,
L. ferriphilum
dominated C group, while
F. thermophilum
dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe
3+
and H
+
, which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28260145</pmid><doi>10.1007/s00203-017-1342-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-8933 |
ispartof | Archives of microbiology, 2017-07, Vol.199 (5), p.757-766 |
issn | 0302-8933 1432-072X |
language | eng |
recordid | cdi_proquest_miscellaneous_1874783480 |
source | Springer Nature |
subjects | Acidithiobacillus - classification Acidithiobacillus - metabolism Archaea Archaea - classification Archaea - metabolism Bacteria Bacterial leaching Biochemistry Biomedical and Life Sciences Biotechnology Cell Biology Chalcopyrite Clostridiales - classification Clostridiales - metabolism Communities Community composition Community structure Composition effects Copper Copper - chemistry Dominant species Dynamic structural analysis Dynamics Ecology Efficiency Extraction Heavy metal content Iron Iron - chemistry Leaching Leptospiraceae - classification Leptospiraceae - metabolism Life Sciences Microbial Consortia - physiology Microbial Ecology Microbiology Microorganisms Original Paper Polymerase chain reaction Pyrite Redox potential Sphalerite Sulfides - chemistry Thermophilic bacteria Zinc Compounds - chemistry Zincblende |
title | Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20pyrite%20and%20sphalerite%20on%20population%20compositions,%20dynamics%20and%20copper%20extraction%20efficiency%20in%20chalcopyrite%20bioleaching%20process&rft.jtitle=Archives%20of%20microbiology&rft.au=Xiao,%20Yunhua&rft.date=2017-07-01&rft.volume=199&rft.issue=5&rft.spage=757&rft.epage=766&rft.pages=757-766&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-017-1342-9&rft_dat=%3Cproquest_cross%3E1874783480%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1908686859&rft_id=info:pmid/28260145&rfr_iscdi=true |