Loading…

Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process

This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variatio...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology 2017-07, Vol.199 (5), p.757-766
Main Authors: Xiao, Yunhua, Liu, Xueduan, Dong, Weiling, Liang, Yili, Niu, Jiaojiao, Gu, Yabing, Ma, Liyuan, Hao, Xiaodong, Zhang, Xian, Xu, Zhen, Yin, Huaqun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3
cites cdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3
container_end_page 766
container_issue 5
container_start_page 757
container_title Archives of microbiology
container_volume 199
creator Xiao, Yunhua
Liu, Xueduan
Dong, Weiling
Liang, Yili
Niu, Jiaojiao
Gu, Yabing
Ma, Liyuan
Hao, Xiaodong
Zhang, Xian
Xu, Zhen
Yin, Huaqun
description This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.
doi_str_mv 10.1007/s00203-017-1342-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1874783480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1874783480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</originalsourceid><addsrcrecordid>eNp1kc-K1TAUxoMoznX0AdxIwY2LqZ786W26lGEchQE3Cu5Cenoyk6FtYtKC9xV8anNvRxFBssg55Pd9J8nH2EsObzlA-y4DCJA18LbmUom6e8R2XElRQyu-PWY7kCBq3Ul5xp7lfA_Ahdb6KTsTWuyBq2bHfl45R7jkKrgqHpJfqLLzUOV4Z0c6tWGuYojraBdfSgxTDNkf63xRDYfZTh7zSYMhRkoV_ViSxRNMznn0NOOh8kVaLAuzDel9GMninZ9vq5gCUs7P2RNnx0wvHvZz9vXD1ZfLj_XN5-tPl-9vapStWOpG2KFHKi_BRrYEg3KKGmkb2ypuFfa8_AVXVgnuOnRa76UGRN6AHUj0KM_Zm823zP2-Ul7M5DPSONqZwpoN161qtVQaCvr6H_Q-rGkutzO8A70vq-kKxTcKU8g5kTMx-cmmg-FgjkGZLShTgjLHoMxR8-rBee0nGv4ofidTALEBuRzNt5T-Gv1f11_HcqDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908686859</pqid></control><display><type>article</type><title>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</title><source>Springer Nature</source><creator>Xiao, Yunhua ; Liu, Xueduan ; Dong, Weiling ; Liang, Yili ; Niu, Jiaojiao ; Gu, Yabing ; Ma, Liyuan ; Hao, Xiaodong ; Zhang, Xian ; Xu, Zhen ; Yin, Huaqun</creator><creatorcontrib>Xiao, Yunhua ; Liu, Xueduan ; Dong, Weiling ; Liang, Yili ; Niu, Jiaojiao ; Gu, Yabing ; Ma, Liyuan ; Hao, Xiaodong ; Zhang, Xian ; Xu, Zhen ; Yin, Huaqun</creatorcontrib><description>This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-017-1342-9</identifier><identifier>PMID: 28260145</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acidithiobacillus - classification ; Acidithiobacillus - metabolism ; Archaea ; Archaea - classification ; Archaea - metabolism ; Bacteria ; Bacterial leaching ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Chalcopyrite ; Clostridiales - classification ; Clostridiales - metabolism ; Communities ; Community composition ; Community structure ; Composition effects ; Copper ; Copper - chemistry ; Dominant species ; Dynamic structural analysis ; Dynamics ; Ecology ; Efficiency ; Extraction ; Heavy metal content ; Iron ; Iron - chemistry ; Leaching ; Leptospiraceae - classification ; Leptospiraceae - metabolism ; Life Sciences ; Microbial Consortia - physiology ; Microbial Ecology ; Microbiology ; Microorganisms ; Original Paper ; Polymerase chain reaction ; Pyrite ; Redox potential ; Sphalerite ; Sulfides - chemistry ; Thermophilic bacteria ; Zinc Compounds - chemistry ; Zincblende</subject><ispartof>Archives of microbiology, 2017-07, Vol.199 (5), p.757-766</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Archives of Microbiology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</citedby><cites>FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28260145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Yunhua</creatorcontrib><creatorcontrib>Liu, Xueduan</creatorcontrib><creatorcontrib>Dong, Weiling</creatorcontrib><creatorcontrib>Liang, Yili</creatorcontrib><creatorcontrib>Niu, Jiaojiao</creatorcontrib><creatorcontrib>Gu, Yabing</creatorcontrib><creatorcontrib>Ma, Liyuan</creatorcontrib><creatorcontrib>Hao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Yin, Huaqun</creatorcontrib><title>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.</description><subject>Acidithiobacillus - classification</subject><subject>Acidithiobacillus - metabolism</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - metabolism</subject><subject>Bacteria</subject><subject>Bacterial leaching</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chalcopyrite</subject><subject>Clostridiales - classification</subject><subject>Clostridiales - metabolism</subject><subject>Communities</subject><subject>Community composition</subject><subject>Community structure</subject><subject>Composition effects</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Dominant species</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Ecology</subject><subject>Efficiency</subject><subject>Extraction</subject><subject>Heavy metal content</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Leaching</subject><subject>Leptospiraceae - classification</subject><subject>Leptospiraceae - metabolism</subject><subject>Life Sciences</subject><subject>Microbial Consortia - physiology</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Original Paper</subject><subject>Polymerase chain reaction</subject><subject>Pyrite</subject><subject>Redox potential</subject><subject>Sphalerite</subject><subject>Sulfides - chemistry</subject><subject>Thermophilic bacteria</subject><subject>Zinc Compounds - chemistry</subject><subject>Zincblende</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc-K1TAUxoMoznX0AdxIwY2LqZ786W26lGEchQE3Cu5Cenoyk6FtYtKC9xV8anNvRxFBssg55Pd9J8nH2EsObzlA-y4DCJA18LbmUom6e8R2XElRQyu-PWY7kCBq3Ul5xp7lfA_Ahdb6KTsTWuyBq2bHfl45R7jkKrgqHpJfqLLzUOV4Z0c6tWGuYojraBdfSgxTDNkf63xRDYfZTh7zSYMhRkoV_ViSxRNMznn0NOOh8kVaLAuzDel9GMninZ9vq5gCUs7P2RNnx0wvHvZz9vXD1ZfLj_XN5-tPl-9vapStWOpG2KFHKi_BRrYEg3KKGmkb2ypuFfa8_AVXVgnuOnRa76UGRN6AHUj0KM_Zm823zP2-Ul7M5DPSONqZwpoN161qtVQaCvr6H_Q-rGkutzO8A70vq-kKxTcKU8g5kTMx-cmmg-FgjkGZLShTgjLHoMxR8-rBee0nGv4ofidTALEBuRzNt5T-Gv1f11_HcqDs</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Xiao, Yunhua</creator><creator>Liu, Xueduan</creator><creator>Dong, Weiling</creator><creator>Liang, Yili</creator><creator>Niu, Jiaojiao</creator><creator>Gu, Yabing</creator><creator>Ma, Liyuan</creator><creator>Hao, Xiaodong</creator><creator>Zhang, Xian</creator><creator>Xu, Zhen</creator><creator>Yin, Huaqun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</title><author>Xiao, Yunhua ; Liu, Xueduan ; Dong, Weiling ; Liang, Yili ; Niu, Jiaojiao ; Gu, Yabing ; Ma, Liyuan ; Hao, Xiaodong ; Zhang, Xian ; Xu, Zhen ; Yin, Huaqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidithiobacillus - classification</topic><topic>Acidithiobacillus - metabolism</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - metabolism</topic><topic>Bacteria</topic><topic>Bacterial leaching</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chalcopyrite</topic><topic>Clostridiales - classification</topic><topic>Clostridiales - metabolism</topic><topic>Communities</topic><topic>Community composition</topic><topic>Community structure</topic><topic>Composition effects</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Dominant species</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Ecology</topic><topic>Efficiency</topic><topic>Extraction</topic><topic>Heavy metal content</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Leaching</topic><topic>Leptospiraceae - classification</topic><topic>Leptospiraceae - metabolism</topic><topic>Life Sciences</topic><topic>Microbial Consortia - physiology</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Original Paper</topic><topic>Polymerase chain reaction</topic><topic>Pyrite</topic><topic>Redox potential</topic><topic>Sphalerite</topic><topic>Sulfides - chemistry</topic><topic>Thermophilic bacteria</topic><topic>Zinc Compounds - chemistry</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yunhua</creatorcontrib><creatorcontrib>Liu, Xueduan</creatorcontrib><creatorcontrib>Dong, Weiling</creatorcontrib><creatorcontrib>Liang, Yili</creatorcontrib><creatorcontrib>Niu, Jiaojiao</creatorcontrib><creatorcontrib>Gu, Yabing</creatorcontrib><creatorcontrib>Ma, Liyuan</creatorcontrib><creatorcontrib>Hao, Xiaodong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Xu, Zhen</creatorcontrib><creatorcontrib>Yin, Huaqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yunhua</au><au>Liu, Xueduan</au><au>Dong, Weiling</au><au>Liang, Yili</au><au>Niu, Jiaojiao</au><au>Gu, Yabing</au><au>Ma, Liyuan</au><au>Hao, Xiaodong</au><au>Zhang, Xian</au><au>Xu, Zhen</au><au>Yin, Huaqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>199</volume><issue>5</issue><spage>757</spage><epage>766</epage><pages>757-766</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28260145</pmid><doi>10.1007/s00203-017-1342-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2017-07, Vol.199 (5), p.757-766
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_1874783480
source Springer Nature
subjects Acidithiobacillus - classification
Acidithiobacillus - metabolism
Archaea
Archaea - classification
Archaea - metabolism
Bacteria
Bacterial leaching
Biochemistry
Biomedical and Life Sciences
Biotechnology
Cell Biology
Chalcopyrite
Clostridiales - classification
Clostridiales - metabolism
Communities
Community composition
Community structure
Composition effects
Copper
Copper - chemistry
Dominant species
Dynamic structural analysis
Dynamics
Ecology
Efficiency
Extraction
Heavy metal content
Iron
Iron - chemistry
Leaching
Leptospiraceae - classification
Leptospiraceae - metabolism
Life Sciences
Microbial Consortia - physiology
Microbial Ecology
Microbiology
Microorganisms
Original Paper
Polymerase chain reaction
Pyrite
Redox potential
Sphalerite
Sulfides - chemistry
Thermophilic bacteria
Zinc Compounds - chemistry
Zincblende
title Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20pyrite%20and%20sphalerite%20on%20population%20compositions,%20dynamics%20and%20copper%20extraction%20efficiency%20in%20chalcopyrite%20bioleaching%20process&rft.jtitle=Archives%20of%20microbiology&rft.au=Xiao,%20Yunhua&rft.date=2017-07-01&rft.volume=199&rft.issue=5&rft.spage=757&rft.epage=766&rft.pages=757-766&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-017-1342-9&rft_dat=%3Cproquest_cross%3E1874783480%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-52adbce288c537e0d4f4e53a5a741a4cb113414a421f9cf886380cc150ade2bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1908686859&rft_id=info:pmid/28260145&rfr_iscdi=true