Loading…

Kernel temporal enhancement approach for LORETA source reconstruction using EEG data

Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different v...

Full description

Saved in:
Bibliographic Details
Main Authors: Torres-Valencia, Cristian A., Santamaria, M. Claudia Joana, Alvarez, Mauricio A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4530
container_issue
container_start_page 4527
container_title
container_volume 2016
creator Torres-Valencia, Cristian A.
Santamaria, M. Claudia Joana
Alvarez, Mauricio A.
description Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.
doi_str_mv 10.1109/EMBC.2016.7591734
format conference_proceeding
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1875401103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7591734</ieee_id><sourcerecordid>1875401103</sourcerecordid><originalsourceid>FETCH-LOGICAL-i231t-8224659fd73e9b132cffd6b47a8fda72b8174a4f98ddb9bcaa825b0a7243c1813</originalsourceid><addsrcrecordid>eNotkL1OwzAYRQ0C0VL6AIjFI0uKf2NnLFUoiKJKqEhskeN8oUGJHexk4O2JRKc73KOrq4PQLSUrSkn2kL89blaM0HSlZEYVF2fomgqpFGGMqHM0Z2kmEpIScYHmVEqVUEU-Z2gZ4zchhKo05UxeoRnTE8k0n6PDKwQHLR6g630wLQZ3NM5CB27Apu-DN_aIax_wbv-eH9Y4-jFYwAGsd3EIox0a7_AYG_eF83yLKzOYG3RZmzbC8pQL9PGUHzbPyW6_fdmsd0nDOB0SzZhIZVZXikNWUs5sXVdpKZTRdWUUKzVVwog601VVZqU1RjNZkqkR3FJN-QLd_-9ON39GiEPRNdFC2xoHfowF1UoKMqnjE3r3jzYAUPSh6Uz4LU4a-R--I2I7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1875401103</pqid></control><display><type>conference_proceeding</type><title>Kernel temporal enhancement approach for LORETA source reconstruction using EEG data</title><source>IEEE Xplore All Conference Series</source><creator>Torres-Valencia, Cristian A. ; Santamaria, M. Claudia Joana ; Alvarez, Mauricio A.</creator><creatorcontrib>Torres-Valencia, Cristian A. ; Santamaria, M. Claudia Joana ; Alvarez, Mauricio A.</creatorcontrib><description>Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.</description><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 1457702207</identifier><identifier>EISBN: 9781457702204</identifier><identifier>DOI: 10.1109/EMBC.2016.7591734</identifier><identifier>PMID: 28269283</identifier><language>eng</language><publisher>IEEE</publisher><subject>Current density ; Electroencephalography ; Inverse problems ; Kernel ; Signal to noise ratio ; Spatial resolution</subject><ispartof>2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, Vol.2016, p.4527-4530</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Torres-Valencia, Cristian A.</creatorcontrib><creatorcontrib>Santamaria, M. Claudia Joana</creatorcontrib><creatorcontrib>Alvarez, Mauricio A.</creatorcontrib><title>Kernel temporal enhancement approach for LORETA source reconstruction using EEG data</title><title>2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.</description><subject>Current density</subject><subject>Electroencephalography</subject><subject>Inverse problems</subject><subject>Kernel</subject><subject>Signal to noise ratio</subject><subject>Spatial resolution</subject><issn>1557-170X</issn><issn>2694-0604</issn><isbn>1457702207</isbn><isbn>9781457702204</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkL1OwzAYRQ0C0VL6AIjFI0uKf2NnLFUoiKJKqEhskeN8oUGJHexk4O2JRKc73KOrq4PQLSUrSkn2kL89blaM0HSlZEYVF2fomgqpFGGMqHM0Z2kmEpIScYHmVEqVUEU-Z2gZ4zchhKo05UxeoRnTE8k0n6PDKwQHLR6g630wLQZ3NM5CB27Apu-DN_aIax_wbv-eH9Y4-jFYwAGsd3EIox0a7_AYG_eF83yLKzOYG3RZmzbC8pQL9PGUHzbPyW6_fdmsd0nDOB0SzZhIZVZXikNWUs5sXVdpKZTRdWUUKzVVwog601VVZqU1RjNZkqkR3FJN-QLd_-9ON39GiEPRNdFC2xoHfowF1UoKMqnjE3r3jzYAUPSh6Uz4LU4a-R--I2I7</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Torres-Valencia, Cristian A.</creator><creator>Santamaria, M. Claudia Joana</creator><creator>Alvarez, Mauricio A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Kernel temporal enhancement approach for LORETA source reconstruction using EEG data</title><author>Torres-Valencia, Cristian A. ; Santamaria, M. Claudia Joana ; Alvarez, Mauricio A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i231t-8224659fd73e9b132cffd6b47a8fda72b8174a4f98ddb9bcaa825b0a7243c1813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Current density</topic><topic>Electroencephalography</topic><topic>Inverse problems</topic><topic>Kernel</topic><topic>Signal to noise ratio</topic><topic>Spatial resolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Torres-Valencia, Cristian A.</creatorcontrib><creatorcontrib>Santamaria, M. Claudia Joana</creatorcontrib><creatorcontrib>Alvarez, Mauricio A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torres-Valencia, Cristian A.</au><au>Santamaria, M. Claudia Joana</au><au>Alvarez, Mauricio A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kernel temporal enhancement approach for LORETA source reconstruction using EEG data</atitle><btitle>2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2016-08</date><risdate>2016</risdate><volume>2016</volume><spage>4527</spage><epage>4530</epage><pages>4527-4530</pages><issn>1557-170X</issn><eissn>2694-0604</eissn><eisbn>1457702207</eisbn><eisbn>9781457702204</eisbn><abstract>Reconstruction of brain sources from magnetoencephalography and electroencephalography (M/EEG) data is a well known problem in the neuroengineering field. A inverse problem should be solved and several methods have been proposed. Low Resolution Electromagnetic Tomography (LORETA) and the different variations proposed as standardized LORETA (sLORETA) and the standardized weighted LORETA (swLORETA) have solved the inverse problem following a non-parametric approach, that is by setting dipoles in the whole brain domain in order to estimate the dipole positions from the M/EEG data and assuming some spatial priors. Errors in the reconstruction of sources are presented due the low spatial resolution of the LORETA framework and the influence of noise in the observable data. In this work a kernel temporal enhancement (kTE) is proposed in order to build a preprocessing stage of the data that allows in combination with the swLORETA method a improvement in the source reconstruction. The results are quantified in terms of three dipole error localization metrics and the strategy of swLORETA + kTE obtained the best results across different signal to noise ratio (SNR) in random dipoles simulation from synthetic EEG data.</abstract><pub>IEEE</pub><pmid>28269283</pmid><doi>10.1109/EMBC.2016.7591734</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1557-170X
ispartof 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, Vol.2016, p.4527-4530
issn 1557-170X
2694-0604
language eng
recordid cdi_proquest_miscellaneous_1875401103
source IEEE Xplore All Conference Series
subjects Current density
Electroencephalography
Inverse problems
Kernel
Signal to noise ratio
Spatial resolution
title Kernel temporal enhancement approach for LORETA source reconstruction using EEG data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A01%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kernel%20temporal%20enhancement%20approach%20for%20LORETA%20source%20reconstruction%20using%20EEG%20data&rft.btitle=2016%2038th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Torres-Valencia,%20Cristian%20A.&rft.date=2016-08&rft.volume=2016&rft.spage=4527&rft.epage=4530&rft.pages=4527-4530&rft.issn=1557-170X&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC.2016.7591734&rft.eisbn=1457702207&rft.eisbn_list=9781457702204&rft_dat=%3Cproquest_ieee_%3E1875401103%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i231t-8224659fd73e9b132cffd6b47a8fda72b8174a4f98ddb9bcaa825b0a7243c1813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1875401103&rft_id=info:pmid/28269283&rft_ieee_id=7591734&rfr_iscdi=true