Loading…

How many sleep stages do we need for an efficient automatic insomnia diagnosis?

Tools used by clinicians to diagnose and treat insomnia typically include sleep diaries and questionnaires. Overnight polysomnography (PSG) recordings are used when the initial diagnosis is uncertain due to the presence of other sleep disorders or when the treatment, either behavioral or pharmacolog...

Full description

Saved in:
Bibliographic Details
Main Authors: Hamida, Sana Tmar-Ben, Glos, Martin, Penzel, Thomas, Ahmed, Beena
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2434
container_issue
container_start_page 2431
container_title
container_volume 2016
creator Hamida, Sana Tmar-Ben
Glos, Martin
Penzel, Thomas
Ahmed, Beena
description Tools used by clinicians to diagnose and treat insomnia typically include sleep diaries and questionnaires. Overnight polysomnography (PSG) recordings are used when the initial diagnosis is uncertain due to the presence of other sleep disorders or when the treatment, either behavioral or pharmacologic, is unsuccessful. However, the analysis and the scoring of PSG data are time-consuming. To simplify the diagnosis process, in this paper we have proposed an efficient insomnia detection algorithm based on a central single electroencephalographic (EEG) channel (C3) using only deep sleep. We also analyzed several spectral and statistical EEG features of good sleeper controls and subjects suffering from insomnia in different sleep stages to identify the features that offered the best discrimination between the two groups. Our proposed algorithm was evaluated using EEG recordings from 19 patients diagnosed with primary insomnia (11 females, 8 males) and 16 matched control subjects (11 females, 5 males). The sensitivity of our algorithm is 92%, the specificity is 89.9%, the Cohen's kappa is 0.81 and the agreement is 91%, indicating the effectiveness of our proposed method.
doi_str_mv 10.1109/EMBC.2016.7591221
format conference_proceeding
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1875404290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7591221</ieee_id><sourcerecordid>1875404290</sourcerecordid><originalsourceid>FETCH-LOGICAL-i231t-618e11d53c2438ac554a870149cf43100eec94d3db4e7699c2934388cc51f6ef3</originalsourceid><addsrcrecordid>eNot0D1PwzAUhWGDQLSU_gDE4pElxdef8YSgKhSpqAtIbJFxbiqjxC5xqqr_nkp0OsujM7yE3AKbATD7sHh_ns84Az0zygLncEauQSpjGOfMnJMx11YWTDN5QcaglCnAsK8Rmeb8wxgDo7Xg6oqMeMl1WYIek_Uy7Wnn4oHmFnFL8-A2mGmd6B5pRKxpk3rqIsWmCT5gHKjbDalzQ_A0xJy6GBytg9vElEN-vCGXjWszTk87IZ8vi4_5slitX9_mT6sicAFDoaFEgFoJz6UonVdKutIwkNY3UgBjiN7KWtTfEo221nMrjrD0XkGjsRETcv__u-3T7w7zUHUhe2xbFzHtcgWlUZJJbtmR3v3TgIjVtg-d6w_VqaD4A-pIX28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1875404290</pqid></control><display><type>conference_proceeding</type><title>How many sleep stages do we need for an efficient automatic insomnia diagnosis?</title><source>IEEE Xplore All Conference Series</source><creator>Hamida, Sana Tmar-Ben ; Glos, Martin ; Penzel, Thomas ; Ahmed, Beena</creator><creatorcontrib>Hamida, Sana Tmar-Ben ; Glos, Martin ; Penzel, Thomas ; Ahmed, Beena</creatorcontrib><description>Tools used by clinicians to diagnose and treat insomnia typically include sleep diaries and questionnaires. Overnight polysomnography (PSG) recordings are used when the initial diagnosis is uncertain due to the presence of other sleep disorders or when the treatment, either behavioral or pharmacologic, is unsuccessful. However, the analysis and the scoring of PSG data are time-consuming. To simplify the diagnosis process, in this paper we have proposed an efficient insomnia detection algorithm based on a central single electroencephalographic (EEG) channel (C3) using only deep sleep. We also analyzed several spectral and statistical EEG features of good sleeper controls and subjects suffering from insomnia in different sleep stages to identify the features that offered the best discrimination between the two groups. Our proposed algorithm was evaluated using EEG recordings from 19 patients diagnosed with primary insomnia (11 females, 8 males) and 16 matched control subjects (11 females, 5 males). The sensitivity of our algorithm is 92%, the specificity is 89.9%, the Cohen's kappa is 0.81 and the agreement is 91%, indicating the effectiveness of our proposed method.</description><identifier>ISSN: 1557-170X</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 1457702207</identifier><identifier>EISBN: 9781457702204</identifier><identifier>DOI: 10.1109/EMBC.2016.7591221</identifier><identifier>PMID: 28268816</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; Electroencephalography ; Feature extraction ; Principal component analysis ; Sensitivity ; Sleep ; Training</subject><ispartof>2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, Vol.2016, p.2431-2434</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hamida, Sana Tmar-Ben</creatorcontrib><creatorcontrib>Glos, Martin</creatorcontrib><creatorcontrib>Penzel, Thomas</creatorcontrib><creatorcontrib>Ahmed, Beena</creatorcontrib><title>How many sleep stages do we need for an efficient automatic insomnia diagnosis?</title><title>2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Tools used by clinicians to diagnose and treat insomnia typically include sleep diaries and questionnaires. Overnight polysomnography (PSG) recordings are used when the initial diagnosis is uncertain due to the presence of other sleep disorders or when the treatment, either behavioral or pharmacologic, is unsuccessful. However, the analysis and the scoring of PSG data are time-consuming. To simplify the diagnosis process, in this paper we have proposed an efficient insomnia detection algorithm based on a central single electroencephalographic (EEG) channel (C3) using only deep sleep. We also analyzed several spectral and statistical EEG features of good sleeper controls and subjects suffering from insomnia in different sleep stages to identify the features that offered the best discrimination between the two groups. Our proposed algorithm was evaluated using EEG recordings from 19 patients diagnosed with primary insomnia (11 females, 8 males) and 16 matched control subjects (11 females, 5 males). The sensitivity of our algorithm is 92%, the specificity is 89.9%, the Cohen's kappa is 0.81 and the agreement is 91%, indicating the effectiveness of our proposed method.</description><subject>Complexity theory</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Principal component analysis</subject><subject>Sensitivity</subject><subject>Sleep</subject><subject>Training</subject><issn>1557-170X</issn><issn>2694-0604</issn><isbn>1457702207</isbn><isbn>9781457702204</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNot0D1PwzAUhWGDQLSU_gDE4pElxdef8YSgKhSpqAtIbJFxbiqjxC5xqqr_nkp0OsujM7yE3AKbATD7sHh_ns84Az0zygLncEauQSpjGOfMnJMx11YWTDN5QcaglCnAsK8Rmeb8wxgDo7Xg6oqMeMl1WYIek_Uy7Wnn4oHmFnFL8-A2mGmd6B5pRKxpk3rqIsWmCT5gHKjbDalzQ_A0xJy6GBytg9vElEN-vCGXjWszTk87IZ8vi4_5slitX9_mT6sicAFDoaFEgFoJz6UonVdKutIwkNY3UgBjiN7KWtTfEo221nMrjrD0XkGjsRETcv__u-3T7w7zUHUhe2xbFzHtcgWlUZJJbtmR3v3TgIjVtg-d6w_VqaD4A-pIX28</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Hamida, Sana Tmar-Ben</creator><creator>Glos, Martin</creator><creator>Penzel, Thomas</creator><creator>Ahmed, Beena</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>How many sleep stages do we need for an efficient automatic insomnia diagnosis?</title><author>Hamida, Sana Tmar-Ben ; Glos, Martin ; Penzel, Thomas ; Ahmed, Beena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i231t-618e11d53c2438ac554a870149cf43100eec94d3db4e7699c2934388cc51f6ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complexity theory</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Principal component analysis</topic><topic>Sensitivity</topic><topic>Sleep</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamida, Sana Tmar-Ben</creatorcontrib><creatorcontrib>Glos, Martin</creatorcontrib><creatorcontrib>Penzel, Thomas</creatorcontrib><creatorcontrib>Ahmed, Beena</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamida, Sana Tmar-Ben</au><au>Glos, Martin</au><au>Penzel, Thomas</au><au>Ahmed, Beena</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>How many sleep stages do we need for an efficient automatic insomnia diagnosis?</atitle><btitle>2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2016-08</date><risdate>2016</risdate><volume>2016</volume><spage>2431</spage><epage>2434</epage><pages>2431-2434</pages><issn>1557-170X</issn><eissn>2694-0604</eissn><eisbn>1457702207</eisbn><eisbn>9781457702204</eisbn><abstract>Tools used by clinicians to diagnose and treat insomnia typically include sleep diaries and questionnaires. Overnight polysomnography (PSG) recordings are used when the initial diagnosis is uncertain due to the presence of other sleep disorders or when the treatment, either behavioral or pharmacologic, is unsuccessful. However, the analysis and the scoring of PSG data are time-consuming. To simplify the diagnosis process, in this paper we have proposed an efficient insomnia detection algorithm based on a central single electroencephalographic (EEG) channel (C3) using only deep sleep. We also analyzed several spectral and statistical EEG features of good sleeper controls and subjects suffering from insomnia in different sleep stages to identify the features that offered the best discrimination between the two groups. Our proposed algorithm was evaluated using EEG recordings from 19 patients diagnosed with primary insomnia (11 females, 8 males) and 16 matched control subjects (11 females, 5 males). The sensitivity of our algorithm is 92%, the specificity is 89.9%, the Cohen's kappa is 0.81 and the agreement is 91%, indicating the effectiveness of our proposed method.</abstract><pub>IEEE</pub><pmid>28268816</pmid><doi>10.1109/EMBC.2016.7591221</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1557-170X
ispartof 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, Vol.2016, p.2431-2434
issn 1557-170X
2694-0604
language eng
recordid cdi_proquest_miscellaneous_1875404290
source IEEE Xplore All Conference Series
subjects Complexity theory
Electroencephalography
Feature extraction
Principal component analysis
Sensitivity
Sleep
Training
title How many sleep stages do we need for an efficient automatic insomnia diagnosis?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=How%20many%20sleep%20stages%20do%20we%20need%20for%20an%20efficient%20automatic%20insomnia%20diagnosis?&rft.btitle=2016%2038th%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Hamida,%20Sana%20Tmar-Ben&rft.date=2016-08&rft.volume=2016&rft.spage=2431&rft.epage=2434&rft.pages=2431-2434&rft.issn=1557-170X&rft.eissn=2694-0604&rft_id=info:doi/10.1109/EMBC.2016.7591221&rft.eisbn=1457702207&rft.eisbn_list=9781457702204&rft_dat=%3Cproquest_ieee_%3E1875404290%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i231t-618e11d53c2438ac554a870149cf43100eec94d3db4e7699c2934388cc51f6ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1875404290&rft_id=info:pmid/28268816&rft_ieee_id=7591221&rfr_iscdi=true