Loading…

Early post-fire regeneration in subalpine heathland and grassland in the Victorian Alpine National Park, south-eastern Australia

Landscape fire (at the scale of square kilometres or more) is relatively rare in the alpine and subalpine environments of Australia. In early 1998, a major fire (the ‘Caledonia Fire’), burnt approximately 35 000 ha, of which approximately 3000 hectares was subalpine heathland, grassland and wetland...

Full description

Saved in:
Bibliographic Details
Published in:Austral ecology 2001-12, Vol.26 (6), p.670-679
Main Authors: Wahren, C-H. A., Papst, W. A., Williams, R. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Landscape fire (at the scale of square kilometres or more) is relatively rare in the alpine and subalpine environments of Australia. In early 1998, a major fire (the ‘Caledonia Fire’), burnt approximately 35 000 ha, of which approximately 3000 hectares was subalpine heathland, grassland and wetland within the Victorian Alpine National Park. This fire was one of only three landscape‐scale fires that have occurred anywhere in the treeless vegetation of the Victorian Alps in the past 100 years, the others being in 1939 and 1985. Monitoring of regeneration in subalpine vegetation commenced 3 weeks postfire. Sites were established in burnt grassland at Holmes Plain (1400 m a.s.l.) and burnt grassland and heathland at Wellington Plain (1480 m a.s.l.), and in unburnt grassland at both sites. In burnt grassland and heathland, the fire consumed much of the vegetation, leaving extensive areas of bare ground. The cover of dense vegetation declined from > 70% prefire, to approximately 15% immediately postfire. Bare ground at the Holmes and Wellington Plains sites ranged from 70% to 85% immediately postfire. By May 2000, approximately 2.5 years postfire, dense vegetation cover in grassland had increased to approximately 20%, and bare ground had decreased to an average of approximately 30%. In unburnt grassland, dense vegetation cover was generally > 95%, and the amount of bare ground less than 5%. The tussock‐forming snow grasses resprouted vigorously following fire, and had flowered prolifically after 1 year. In heathland, most of the shrubs were incinerated, leaving close to 100% bare soil. Since then, a number of grasses and some dominant shrubs have resprouted vigorously, with some seedling regeneration. By May 2000, in heathland, bare soil was still > 50% and dense vegetation < 20%. Such ground cover conditions during this early postfire period were well below prefire levels, and well below the levels necessary to protect alpine soils from erosion. The Caledonia Fire has provided a rare opportunity to study ecological processes associated with postfire regeneration in treeless subalpine landscapes.
ISSN:1442-9985
1442-9993
DOI:10.1046/j.1442-9993.2001.01151.x