Loading…

Quantitative prediction of ionization effect on human skin permeability

[Display omitted] Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2017-04, Vol.522 (1-2), p.222-233
Main Authors: Baba, Hiromi, Ueno, Yusuke, Hashida, Mitsuru, Yamashita, Fumiyoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-528153d3fbb337d458d1a67670d00f145221ffcbb7960b7eafcac90f980f02d63
cites cdi_FETCH-LOGICAL-c391t-528153d3fbb337d458d1a67670d00f145221ffcbb7960b7eafcac90f980f02d63
container_end_page 233
container_issue 1-2
container_start_page 222
container_title International journal of pharmaceutics
container_volume 522
creator Baba, Hiromi
Ueno, Yusuke
Hashida, Mitsuru
Yamashita, Fumiyoshi
description [Display omitted] Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol–water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization.
doi_str_mv 10.1016/j.ijpharm.2017.03.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1876495504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037851731730176X</els_id><sourcerecordid>1876495504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-528153d3fbb337d458d1a67670d00f145221ffcbb7960b7eafcac90f980f02d63</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMozjj6E5Qu3bTeNG3SrkRER2FABF2HNA8mtS-TdmD89Wac0a2rcy-ccy_nQ-gSQ4IB05s6sfWwFq5NUsAsAZIAlEdojgtGYpIxeozmQFgR55iRGTrzvgYAmmJyimZpkbKSkXKOlq-T6EY7itFudDQ4rawcbd9FvYmC2C_xs2ljtByjMK2nVnSR_7BdNGjXalHZxo7bc3RiROP1xUEX6P3x4e3-KV69LJ_v71axJCUe4zwtcE4UMVVFCFNZXigsKKMMFIDBWZ6m2BhZVaykUDEtjBSyBFMWYCBVlCzQ9f7u4PrPSfuRt9ZL3TSi0_3keahPszLPIQvWfG-VrvfeacMHZ1vhthwD3zHkNT8w5DuGHAgPDEPu6vBiqlqt_lK_0ILhdm_QoejGase9tLqTgZ0LlLjq7T8vvgGlFYYB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876495504</pqid></control><display><type>article</type><title>Quantitative prediction of ionization effect on human skin permeability</title><source>ScienceDirect Journals</source><creator>Baba, Hiromi ; Ueno, Yusuke ; Hashida, Mitsuru ; Yamashita, Fumiyoshi</creator><creatorcontrib>Baba, Hiromi ; Ueno, Yusuke ; Hashida, Mitsuru ; Yamashita, Fumiyoshi</creatorcontrib><description>[Display omitted] Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol–water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2017.03.009</identifier><identifier>PMID: 28279739</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Databases, Factual ; Gaussian process ; Humans ; Hydrogen-Ion Concentration ; Ionization effect ; Ions - chemistry ; Least-Squares Analysis ; Linear Models ; Normal Distribution ; Permeability ; Predictive Value of Tests ; QSPR ; Quantitative Structure-Activity Relationship ; Skin Absorption ; Skin permeability ; Solubility ; Support Vector Machine ; Support vector regression ; Transdermal absorption</subject><ispartof>International journal of pharmaceutics, 2017-04, Vol.522 (1-2), p.222-233</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-528153d3fbb337d458d1a67670d00f145221ffcbb7960b7eafcac90f980f02d63</citedby><cites>FETCH-LOGICAL-c391t-528153d3fbb337d458d1a67670d00f145221ffcbb7960b7eafcac90f980f02d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28279739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baba, Hiromi</creatorcontrib><creatorcontrib>Ueno, Yusuke</creatorcontrib><creatorcontrib>Hashida, Mitsuru</creatorcontrib><creatorcontrib>Yamashita, Fumiyoshi</creatorcontrib><title>Quantitative prediction of ionization effect on human skin permeability</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol–water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization.</description><subject>Databases, Factual</subject><subject>Gaussian process</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ionization effect</subject><subject>Ions - chemistry</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>Normal Distribution</subject><subject>Permeability</subject><subject>Predictive Value of Tests</subject><subject>QSPR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Skin Absorption</subject><subject>Skin permeability</subject><subject>Solubility</subject><subject>Support Vector Machine</subject><subject>Support vector regression</subject><subject>Transdermal absorption</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMozjj6E5Qu3bTeNG3SrkRER2FABF2HNA8mtS-TdmD89Wac0a2rcy-ccy_nQ-gSQ4IB05s6sfWwFq5NUsAsAZIAlEdojgtGYpIxeozmQFgR55iRGTrzvgYAmmJyimZpkbKSkXKOlq-T6EY7itFudDQ4rawcbd9FvYmC2C_xs2ljtByjMK2nVnSR_7BdNGjXalHZxo7bc3RiROP1xUEX6P3x4e3-KV69LJ_v71axJCUe4zwtcE4UMVVFCFNZXigsKKMMFIDBWZ6m2BhZVaykUDEtjBSyBFMWYCBVlCzQ9f7u4PrPSfuRt9ZL3TSi0_3keahPszLPIQvWfG-VrvfeacMHZ1vhthwD3zHkNT8w5DuGHAgPDEPu6vBiqlqt_lK_0ILhdm_QoejGase9tLqTgZ0LlLjq7T8vvgGlFYYB</recordid><startdate>20170430</startdate><enddate>20170430</enddate><creator>Baba, Hiromi</creator><creator>Ueno, Yusuke</creator><creator>Hashida, Mitsuru</creator><creator>Yamashita, Fumiyoshi</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170430</creationdate><title>Quantitative prediction of ionization effect on human skin permeability</title><author>Baba, Hiromi ; Ueno, Yusuke ; Hashida, Mitsuru ; Yamashita, Fumiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-528153d3fbb337d458d1a67670d00f145221ffcbb7960b7eafcac90f980f02d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Databases, Factual</topic><topic>Gaussian process</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ionization effect</topic><topic>Ions - chemistry</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>Normal Distribution</topic><topic>Permeability</topic><topic>Predictive Value of Tests</topic><topic>QSPR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Skin Absorption</topic><topic>Skin permeability</topic><topic>Solubility</topic><topic>Support Vector Machine</topic><topic>Support vector regression</topic><topic>Transdermal absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baba, Hiromi</creatorcontrib><creatorcontrib>Ueno, Yusuke</creatorcontrib><creatorcontrib>Hashida, Mitsuru</creatorcontrib><creatorcontrib>Yamashita, Fumiyoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baba, Hiromi</au><au>Ueno, Yusuke</au><au>Hashida, Mitsuru</au><au>Yamashita, Fumiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative prediction of ionization effect on human skin permeability</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2017-04-30</date><risdate>2017</risdate><volume>522</volume><issue>1-2</issue><spage>222</spage><epage>233</epage><pages>222-233</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol–water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28279739</pmid><doi>10.1016/j.ijpharm.2017.03.009</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2017-04, Vol.522 (1-2), p.222-233
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_1876495504
source ScienceDirect Journals
subjects Databases, Factual
Gaussian process
Humans
Hydrogen-Ion Concentration
Ionization effect
Ions - chemistry
Least-Squares Analysis
Linear Models
Normal Distribution
Permeability
Predictive Value of Tests
QSPR
Quantitative Structure-Activity Relationship
Skin Absorption
Skin permeability
Solubility
Support Vector Machine
Support vector regression
Transdermal absorption
title Quantitative prediction of ionization effect on human skin permeability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20prediction%20of%20ionization%20effect%20on%20human%20skin%20permeability&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Baba,%20Hiromi&rft.date=2017-04-30&rft.volume=522&rft.issue=1-2&rft.spage=222&rft.epage=233&rft.pages=222-233&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2017.03.009&rft_dat=%3Cproquest_cross%3E1876495504%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-528153d3fbb337d458d1a67670d00f145221ffcbb7960b7eafcac90f980f02d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1876495504&rft_id=info:pmid/28279739&rfr_iscdi=true