Loading…
Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control
An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the...
Saved in:
Published in: | Bioinspiration & biomimetics 2017-04, Vol.12 (3), p.036006-036006 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-3277be78e122b133ede755dcabbdf339ae9df32ddac19524a416b1ea67180b233 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-3277be78e122b133ede755dcabbdf339ae9df32ddac19524a416b1ea67180b233 |
container_end_page | 036006 |
container_issue | 3 |
container_start_page | 036006 |
container_title | Bioinspiration & biomimetics |
container_volume | 12 |
creator | Phan, Hoang Vu Kang, Taesam Park, Hoon Cheol |
description | An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles. |
doi_str_mv | 10.1088/1748-3190/aa65db |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1876497237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1876497237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-3277be78e122b133ede755dcabbdf339ae9df32ddac19524a416b1ea67180b233</originalsourceid><addsrcrecordid>eNp9kEtv1TAQhS1ERUthzwp5hbogrR9J7CxReUqVuilra-xMct36JsF2WrGoxJa_yS_BV7dULBCbmdHoO0c6h5BXnJ1ypvUZV7WuJO_YGUDb9PYJOXp8Pf3rPiTPU7pmrKk7LZ6RQ6GF5nWrj8j9e0x-nChMPU0ZbEA6BD9uMp0HClTwXz9-jtRPCV2ugr9BmsGHgCkVDpbFTyO9242td3Gm4CO9xY13xefO503xHdcAkUbIWCSIvQV3Q9085TiHF-RggJDw5cM-Jl8_frg6_1xdXH76cv7uonKyVbmSQimLSiMXwnIpsUfVNL0Da_tByg6wK1v0PTjeNaKGmreWI7SKa2aFlMfkZO-7xPnbiimbrU8OQ4AJ5zUZrlVbd0pIVVC2R0uclCIOZol-C_G74czsSje7Vs2uVbMvvUheP7ivdov9o-BPywV4uwf8vJjreY1TCfs_vzf_wK01XBhpmGwZa81SEv8GroKajQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876497237</pqid></control><display><type>article</type><title>Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control</title><source>IOPscience extra</source><creator>Phan, Hoang Vu ; Kang, Taesam ; Park, Hoon Cheol</creator><creatorcontrib>Phan, Hoang Vu ; Kang, Taesam ; Park, Hoon Cheol</creatorcontrib><description>An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.</description><identifier>ISSN: 1748-3190</identifier><identifier>EISSN: 1748-3190</identifier><identifier>DOI: 10.1088/1748-3190/aa65db</identifier><identifier>PMID: 28281468</identifier><identifier>CODEN: BBIICI</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Air ; Animals ; Biomechanical Phenomena ; Biomimetic Materials ; biomimetics ; Biomimetics - instrumentation ; Coleoptera - anatomy & histology ; Coleoptera - physiology ; Efficiency ; Equipment Design ; flapping wing ; Flight, Animal - physiology ; hovering ; insect flight ; micro aerial vehicle (MAV) ; Models, Biological ; PD controller ; Rotation ; Wings, Animal - anatomy & histology ; Wings, Animal - physiology</subject><ispartof>Bioinspiration & biomimetics, 2017-04, Vol.12 (3), p.036006-036006</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-3277be78e122b133ede755dcabbdf339ae9df32ddac19524a416b1ea67180b233</citedby><cites>FETCH-LOGICAL-c367t-3277be78e122b133ede755dcabbdf339ae9df32ddac19524a416b1ea67180b233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-3190/aa65db/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,53840</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28281468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phan, Hoang Vu</creatorcontrib><creatorcontrib>Kang, Taesam</creatorcontrib><creatorcontrib>Park, Hoon Cheol</creatorcontrib><title>Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control</title><title>Bioinspiration & biomimetics</title><addtitle>BB</addtitle><addtitle>Bioinspir. Biomim</addtitle><description>An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.</description><subject>Air</subject><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Biomimetic Materials</subject><subject>biomimetics</subject><subject>Biomimetics - instrumentation</subject><subject>Coleoptera - anatomy & histology</subject><subject>Coleoptera - physiology</subject><subject>Efficiency</subject><subject>Equipment Design</subject><subject>flapping wing</subject><subject>Flight, Animal - physiology</subject><subject>hovering</subject><subject>insect flight</subject><subject>micro aerial vehicle (MAV)</subject><subject>Models, Biological</subject><subject>PD controller</subject><subject>Rotation</subject><subject>Wings, Animal - anatomy & histology</subject><subject>Wings, Animal - physiology</subject><issn>1748-3190</issn><issn>1748-3190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtv1TAQhS1ERUthzwp5hbogrR9J7CxReUqVuilra-xMct36JsF2WrGoxJa_yS_BV7dULBCbmdHoO0c6h5BXnJ1ypvUZV7WuJO_YGUDb9PYJOXp8Pf3rPiTPU7pmrKk7LZ6RQ6GF5nWrj8j9e0x-nChMPU0ZbEA6BD9uMp0HClTwXz9-jtRPCV2ugr9BmsGHgCkVDpbFTyO9242td3Gm4CO9xY13xefO503xHdcAkUbIWCSIvQV3Q9085TiHF-RggJDw5cM-Jl8_frg6_1xdXH76cv7uonKyVbmSQimLSiMXwnIpsUfVNL0Da_tByg6wK1v0PTjeNaKGmreWI7SKa2aFlMfkZO-7xPnbiimbrU8OQ4AJ5zUZrlVbd0pIVVC2R0uclCIOZol-C_G74czsSje7Vs2uVbMvvUheP7ivdov9o-BPywV4uwf8vJjreY1TCfs_vzf_wK01XBhpmGwZa81SEv8GroKajQ</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Phan, Hoang Vu</creator><creator>Kang, Taesam</creator><creator>Park, Hoon Cheol</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170404</creationdate><title>Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control</title><author>Phan, Hoang Vu ; Kang, Taesam ; Park, Hoon Cheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-3277be78e122b133ede755dcabbdf339ae9df32ddac19524a416b1ea67180b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air</topic><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Biomimetic Materials</topic><topic>biomimetics</topic><topic>Biomimetics - instrumentation</topic><topic>Coleoptera - anatomy & histology</topic><topic>Coleoptera - physiology</topic><topic>Efficiency</topic><topic>Equipment Design</topic><topic>flapping wing</topic><topic>Flight, Animal - physiology</topic><topic>hovering</topic><topic>insect flight</topic><topic>micro aerial vehicle (MAV)</topic><topic>Models, Biological</topic><topic>PD controller</topic><topic>Rotation</topic><topic>Wings, Animal - anatomy & histology</topic><topic>Wings, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phan, Hoang Vu</creatorcontrib><creatorcontrib>Kang, Taesam</creatorcontrib><creatorcontrib>Park, Hoon Cheol</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinspiration & biomimetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phan, Hoang Vu</au><au>Kang, Taesam</au><au>Park, Hoon Cheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control</atitle><jtitle>Bioinspiration & biomimetics</jtitle><stitle>BB</stitle><addtitle>Bioinspir. Biomim</addtitle><date>2017-04-04</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>036006</spage><epage>036006</epage><pages>036006-036006</pages><issn>1748-3190</issn><eissn>1748-3190</eissn><coden>BBIICI</coden><abstract>An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28281468</pmid><doi>10.1088/1748-3190/aa65db</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3190 |
ispartof | Bioinspiration & biomimetics, 2017-04, Vol.12 (3), p.036006-036006 |
issn | 1748-3190 1748-3190 |
language | eng |
recordid | cdi_proquest_miscellaneous_1876497237 |
source | IOPscience extra |
subjects | Air Animals Biomechanical Phenomena Biomimetic Materials biomimetics Biomimetics - instrumentation Coleoptera - anatomy & histology Coleoptera - physiology Efficiency Equipment Design flapping wing Flight, Animal - physiology hovering insect flight micro aerial vehicle (MAV) Models, Biological PD controller Rotation Wings, Animal - anatomy & histology Wings, Animal - physiology |
title | Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20stable%20flight%20of%20a%2021%E2%80%89g%20insect-like%20tailless%20flapping%20wing%20micro%20air%20vehicle%20with%20angular%20rates%20feedback%20control&rft.jtitle=Bioinspiration%20&%20biomimetics&rft.au=Phan,%20Hoang%20Vu&rft.date=2017-04-04&rft.volume=12&rft.issue=3&rft.spage=036006&rft.epage=036006&rft.pages=036006-036006&rft.issn=1748-3190&rft.eissn=1748-3190&rft.coden=BBIICI&rft_id=info:doi/10.1088/1748-3190/aa65db&rft_dat=%3Cproquest_cross%3E1876497237%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-3277be78e122b133ede755dcabbdf339ae9df32ddac19524a416b1ea67180b233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1876497237&rft_id=info:pmid/28281468&rfr_iscdi=true |