Loading…

Flooding adds pathogenic Escherichia coli strains to the water sources in southern Khyber Pakhtunkhwa, Pakistan

Purpose: Seasonal rains in Pakistan result in heavy floods across the country, whereby faecal contaminants will be added to the water bodies and cause numerous food-borne outbreaks. The present study was aimed to determine the prevalence of diarrheagenic Escherichia coli (DEC) strains in the water s...

Full description

Saved in:
Bibliographic Details
Published in:Indian journal of medical microbiology 2016-10, Vol.34 (4), p.483-488
Main Authors: Shah, MS, Eppinger, M, Ahmed, S, Shah, AA, Hameed, A, Hasan, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: Seasonal rains in Pakistan result in heavy floods across the country, whereby faecal contaminants will be added to the water bodies and cause numerous food-borne outbreaks. The present study was aimed to determine the prevalence of diarrheagenic Escherichia coli (DEC) strains in the water sources. Materials and Methods: Two hundred water samples collected during (2011–2012) were processed for the isolation of E. coli (EC) strains. EC strains were further analysed for antibiotic susceptibility patterns, and pathogroups-specific virulence factors stx1, stx2, stx2c, eae, tir, hlyA, bfpA, estA and eltA were detected using multiplex polymerase chain reaction. Results: Thirty-three percent of the water samples were contaminated with EC pathotypes. Fifty percent (33/66) of the DEC pathotypes were identified as enterotoxigenic EC (ETEC). Seventy-two percent (13/18) of the enteropathogenic EC (EPEC) strains were identified as typical EPEC and 28% (5/18) as atypical EPEC. Eleven percent (7/66) of the Shiga toxin EC (STEC) isolates carried a combination of stx1 and stx2 genes. Summer was found as a peak season with 47% (31/66) for EC pathogroups’ activities. Eighty-nine percent of the strains showed resistance against tetracycline. Conclusion: ETEC and EPEC are the primary causes of water contamination in southern regions of Khyber Pakhtunkhwa province, Pakistan. Firm adherence to the prescribed drugs can decrease trends in antibiotic resistance.
ISSN:0255-0857
1998-3646
DOI:10.4103/0255-0857.195350