Loading…
Adenovirus-mediated Foxp3 expression in lung epithelial cells ameliorates acute radiation-induced pneumonitis in mice
Forkhead transcription factor 3 (Foxp3) has a critical role in regulatory T cells (Treg). There are an increasing number of researches concerning the functions of Foxp3 in other cells, including lung epithelial cells besides Treg. However, the roles of Foxp3 in lung epithelial cells remain poorly un...
Saved in:
Published in: | Gene therapy 2017-02, Vol.24 (2), p.104-112 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Forkhead transcription factor 3 (Foxp3) has a critical role in regulatory T cells (Treg). There are an increasing number of researches concerning the functions of Foxp3 in other cells, including lung epithelial cells besides Treg. However, the roles of Foxp3 in lung epithelial cells remain poorly understood. To examine the potential therapeutic benefits of Foxp3 for lung inflammation, this study investigates the effect of adenovirus-mediated Foxp3 overexpression in a radiation-induced lung damage model. Foxp3-EGFP expressing adenovirus was administered by intratracheal injection three times over 14 days after focal X-ray irradiation. To evaluate effects of Foxp3 overexpression in radiation-induced lung inflammation, immune cell profiles of bronchoalveolar lavage (BAL) fluid were analyzed.
Foxp3
gene-delivered mice showed significant inhibition of immune cell infiltration, such as eosinophils, lymphocytes, macrophages and neutrophils in BAL fluid. Histopathological analysis also showed that Foxp3 overexpression inhibits inflammatory cell recruitment and collagen deposition in lung tissues. In addition, expression of inflammatory and fibrosis-related genes was decreased in the Foxp3 expression adenovirus-infected group. These results suggest that Foxp3 expression in lungs holds considerable therapeutic potential for attenuating inflammation and fibrosis in radiation-induced lung injury. |
---|---|
ISSN: | 0969-7128 1476-5462 |
DOI: | 10.1038/gt.2016.86 |