Loading…

Sufficient LMI conditions and Lyapunov redesign for the robust stability of a class of feedback linearized dynamical systems

The robust stability of a class of feedback linearizable minimum-phase nonlinear system, having parametric uncertainties, is investigated in this study. The system in new coordinates is represented to an equivalent formulation after the attempt of feedback linearization. Due to the parametric uncert...

Full description

Saved in:
Bibliographic Details
Published in:ISA transactions 2017-05, Vol.68, p.90-98
Main Author: Azizi, Sajad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-cdb4f7541d026cf6eab20c13aefc29cc6afcf7bb1b5f0b8272211843a9e801bb3
cites cdi_FETCH-LOGICAL-c362t-cdb4f7541d026cf6eab20c13aefc29cc6afcf7bb1b5f0b8272211843a9e801bb3
container_end_page 98
container_issue
container_start_page 90
container_title ISA transactions
container_volume 68
creator Azizi, Sajad
description The robust stability of a class of feedback linearizable minimum-phase nonlinear system, having parametric uncertainties, is investigated in this study. The system in new coordinates is represented to an equivalent formulation after the attempt of feedback linearization. Due to the parametric uncertainties the approximately linearized system entails a norm bounded input nonlinearity such that the equilibrium point condition in error dynamics can not be satisfied. Accordingly, to guarantee the regional asymptotic stability a control synthesis problem is proposed by means of sufficient Linear Matrix Inequalities (LMIs) together with an amended nonlinear control term, derived from the Lyapunov redesign method, which tackles zero steady-state error condition. The numerical examples of a general aviation aircraft's longitudinal dynamics and inverted pendulum are simulated to show the proficiency of the proposed control technique. •Approximate linearization of uncertain nonlinear dynamical systems is considered.•The linearized system is recast into a new formulation to provide control design.•A nonlinear control law is appended to tackle zero steady-state error.•Two dynamical systems are simulated to validate the proposed robust control design.
doi_str_mv 10.1016/j.isatra.2017.02.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877851038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057816306905</els_id><sourcerecordid>1877851038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-cdb4f7541d026cf6eab20c13aefc29cc6afcf7bb1b5f0b8272211843a9e801bb3</originalsourceid><addsrcrecordid>eNp9kMuO1DAQRS0EYpqBP0DISzYJZaeTOBskNOIxUiMWwNryowxukrhxOSMF8fGk1QNLVrcW51apDmPPBdQCRPfqWEcyJZtaguhrkPUWD9hOqH6oJEj5kO0AxFBB26sr9oToCACyHdRjdiWVHEQr-x37_XkJIbqIc-GHj7fcpdnHEtNM3MyeH1ZzWuZ0xzN6pPht5iFlXr4jz8kuVDgVY-MYy8pT4Ia70RCdx4DorXE_-BhnNDn-Qs_9OpspOjNyWqngRE_Zo2BGwmf3ec2-vnv75eZDdfj0_vbmzaFyTSdL5bzdh77dCw-yc6FDYyU40RgMTg7OdSa40FsrbBvAKtlLKYTaN2ZABcLa5pq9vOw95fRzQSp6iuRwHM2MaSG9OetVK6BRG7q_oC4nooxBn3KcTF61AH32ro_64l2fvWuQeout9uL-wmIn9P9Kf0VvwOsLgNufdxGzprN0hz5mdEX7FP9_4Q_xIZjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877851038</pqid></control><display><type>article</type><title>Sufficient LMI conditions and Lyapunov redesign for the robust stability of a class of feedback linearized dynamical systems</title><source>ScienceDirect Freedom Collection</source><creator>Azizi, Sajad</creator><creatorcontrib>Azizi, Sajad</creatorcontrib><description>The robust stability of a class of feedback linearizable minimum-phase nonlinear system, having parametric uncertainties, is investigated in this study. The system in new coordinates is represented to an equivalent formulation after the attempt of feedback linearization. Due to the parametric uncertainties the approximately linearized system entails a norm bounded input nonlinearity such that the equilibrium point condition in error dynamics can not be satisfied. Accordingly, to guarantee the regional asymptotic stability a control synthesis problem is proposed by means of sufficient Linear Matrix Inequalities (LMIs) together with an amended nonlinear control term, derived from the Lyapunov redesign method, which tackles zero steady-state error condition. The numerical examples of a general aviation aircraft's longitudinal dynamics and inverted pendulum are simulated to show the proficiency of the proposed control technique. •Approximate linearization of uncertain nonlinear dynamical systems is considered.•The linearized system is recast into a new formulation to provide control design.•A nonlinear control law is appended to tackle zero steady-state error.•Two dynamical systems are simulated to validate the proposed robust control design.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2017.02.017</identifier><identifier>PMID: 28291527</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Feedback linearization ; Linear matrix inequalities ; Lyapunov redesign</subject><ispartof>ISA transactions, 2017-05, Vol.68, p.90-98</ispartof><rights>2017 ISA</rights><rights>Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-cdb4f7541d026cf6eab20c13aefc29cc6afcf7bb1b5f0b8272211843a9e801bb3</citedby><cites>FETCH-LOGICAL-c362t-cdb4f7541d026cf6eab20c13aefc29cc6afcf7bb1b5f0b8272211843a9e801bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28291527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Azizi, Sajad</creatorcontrib><title>Sufficient LMI conditions and Lyapunov redesign for the robust stability of a class of feedback linearized dynamical systems</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>The robust stability of a class of feedback linearizable minimum-phase nonlinear system, having parametric uncertainties, is investigated in this study. The system in new coordinates is represented to an equivalent formulation after the attempt of feedback linearization. Due to the parametric uncertainties the approximately linearized system entails a norm bounded input nonlinearity such that the equilibrium point condition in error dynamics can not be satisfied. Accordingly, to guarantee the regional asymptotic stability a control synthesis problem is proposed by means of sufficient Linear Matrix Inequalities (LMIs) together with an amended nonlinear control term, derived from the Lyapunov redesign method, which tackles zero steady-state error condition. The numerical examples of a general aviation aircraft's longitudinal dynamics and inverted pendulum are simulated to show the proficiency of the proposed control technique. •Approximate linearization of uncertain nonlinear dynamical systems is considered.•The linearized system is recast into a new formulation to provide control design.•A nonlinear control law is appended to tackle zero steady-state error.•Two dynamical systems are simulated to validate the proposed robust control design.</description><subject>Feedback linearization</subject><subject>Linear matrix inequalities</subject><subject>Lyapunov redesign</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMuO1DAQRS0EYpqBP0DISzYJZaeTOBskNOIxUiMWwNryowxukrhxOSMF8fGk1QNLVrcW51apDmPPBdQCRPfqWEcyJZtaguhrkPUWD9hOqH6oJEj5kO0AxFBB26sr9oToCACyHdRjdiWVHEQr-x37_XkJIbqIc-GHj7fcpdnHEtNM3MyeH1ZzWuZ0xzN6pPht5iFlXr4jz8kuVDgVY-MYy8pT4Ia70RCdx4DorXE_-BhnNDn-Qs_9OpspOjNyWqngRE_Zo2BGwmf3ec2-vnv75eZDdfj0_vbmzaFyTSdL5bzdh77dCw-yc6FDYyU40RgMTg7OdSa40FsrbBvAKtlLKYTaN2ZABcLa5pq9vOw95fRzQSp6iuRwHM2MaSG9OetVK6BRG7q_oC4nooxBn3KcTF61AH32ro_64l2fvWuQeout9uL-wmIn9P9Kf0VvwOsLgNufdxGzprN0hz5mdEX7FP9_4Q_xIZjg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Azizi, Sajad</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>Sufficient LMI conditions and Lyapunov redesign for the robust stability of a class of feedback linearized dynamical systems</title><author>Azizi, Sajad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-cdb4f7541d026cf6eab20c13aefc29cc6afcf7bb1b5f0b8272211843a9e801bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Feedback linearization</topic><topic>Linear matrix inequalities</topic><topic>Lyapunov redesign</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azizi, Sajad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azizi, Sajad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient LMI conditions and Lyapunov redesign for the robust stability of a class of feedback linearized dynamical systems</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2017-05</date><risdate>2017</risdate><volume>68</volume><spage>90</spage><epage>98</epage><pages>90-98</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>The robust stability of a class of feedback linearizable minimum-phase nonlinear system, having parametric uncertainties, is investigated in this study. The system in new coordinates is represented to an equivalent formulation after the attempt of feedback linearization. Due to the parametric uncertainties the approximately linearized system entails a norm bounded input nonlinearity such that the equilibrium point condition in error dynamics can not be satisfied. Accordingly, to guarantee the regional asymptotic stability a control synthesis problem is proposed by means of sufficient Linear Matrix Inequalities (LMIs) together with an amended nonlinear control term, derived from the Lyapunov redesign method, which tackles zero steady-state error condition. The numerical examples of a general aviation aircraft's longitudinal dynamics and inverted pendulum are simulated to show the proficiency of the proposed control technique. •Approximate linearization of uncertain nonlinear dynamical systems is considered.•The linearized system is recast into a new formulation to provide control design.•A nonlinear control law is appended to tackle zero steady-state error.•Two dynamical systems are simulated to validate the proposed robust control design.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28291527</pmid><doi>10.1016/j.isatra.2017.02.017</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2017-05, Vol.68, p.90-98
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_1877851038
source ScienceDirect Freedom Collection
subjects Feedback linearization
Linear matrix inequalities
Lyapunov redesign
title Sufficient LMI conditions and Lyapunov redesign for the robust stability of a class of feedback linearized dynamical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20LMI%20conditions%20and%20Lyapunov%20redesign%20for%20the%20robust%20stability%20of%20a%20class%20of%20feedback%20linearized%20dynamical%20systems&rft.jtitle=ISA%20transactions&rft.au=Azizi,%20Sajad&rft.date=2017-05&rft.volume=68&rft.spage=90&rft.epage=98&rft.pages=90-98&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2017.02.017&rft_dat=%3Cproquest_cross%3E1877851038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-cdb4f7541d026cf6eab20c13aefc29cc6afcf7bb1b5f0b8272211843a9e801bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1877851038&rft_id=info:pmid/28291527&rfr_iscdi=true