Loading…
Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia
Objective Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R defici...
Saved in:
Published in: | European journal of haematology 2017-06, Vol.98 (6), p.584-589 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323 |
---|---|
cites | cdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323 |
container_end_page | 589 |
container_issue | 6 |
container_start_page | 584 |
container_title | European journal of haematology |
container_volume | 98 |
creator | Klei, Thomas R.L. Kheradmand Kia, Sima Veldthuis, Martijn Beuger, Boukje M. Geissler, Judy Dehbozorgian, Javad Karimi, Mehran Bruggen, Robin Zwieten, Rob |
description | Objective
Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive.
Methods
PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development.
Results
We found a novel homozygous mutation (c.583G>A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2.
Conclusions
We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors. |
doi_str_mv | 10.1111/ejh.12874 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877855644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877855644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</originalsourceid><addsrcrecordid>eNp10cFu1DAQBmALgehSOPACyBIXOKS1Yyd2jqgqlLISqIKzNeuMWS9JHOxkUW59BJ6RJ8Htlh6Q6sv48PnXWD8hLzk74fmc4m57wkut5COy4jVjBatZ85isWMPKQkrJj8izlHaMsbLh6ik5KnXZVLUsV-T6CpNvZ-jouMR5DxPSH36AhBTs5Pd-Wqgf6JdP66s_179bdN56HCaKcZm2MfiWjhHtHFOIiQZHgY4w3Yo0O4fRD9-pi6GnCfcYkW4B-9Atk7cUhnz38Jw8cdAlfHE3j8m39-dfzy6K9ecPH8_erQsrKiELkb_Xgq3BsY2UG8UlCs4aYCiskAK0rl2jVK1Eq3UFKGtnVVXVtoWqaUUpjsmbQ-4Yw88Z02R6nyx2HQwY5mS4VkrnB1Jm-vo_ugtzHPJ2hjclk4probN6e1A2hpQiOjNG30NcDGfmphaTazG3tWT76i5x3vTY3st_PWRwegC_fIfLw0nm_PLiEPkXbB-Y8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920471838</pqid></control><display><type>article</type><title>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Klei, Thomas R.L. ; Kheradmand Kia, Sima ; Veldthuis, Martijn ; Beuger, Boukje M. ; Geissler, Judy ; Dehbozorgian, Javad ; Karimi, Mehran ; Bruggen, Robin ; Zwieten, Rob</creator><creatorcontrib>Klei, Thomas R.L. ; Kheradmand Kia, Sima ; Veldthuis, Martijn ; Beuger, Boukje M. ; Geissler, Judy ; Dehbozorgian, Javad ; Karimi, Mehran ; Bruggen, Robin ; Zwieten, Rob</creatorcontrib><description>Objective
Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive.
Methods
PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development.
Results
We found a novel homozygous mutation (c.583G>A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2.
Conclusions
We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors.</description><identifier>ISSN: 0902-4441</identifier><identifier>EISSN: 1600-0609</identifier><identifier>DOI: 10.1111/ejh.12874</identifier><identifier>PMID: 28295642</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anemia ; Anemia, Hemolytic, Congenital Nonspherocytic - enzymology ; Anemia, Hemolytic, Congenital Nonspherocytic - genetics ; Anemia, Hemolytic, Congenital Nonspherocytic - pathology ; Base Sequence ; Blood ; Carrier Proteins - genetics ; Cell Differentiation ; Child ; Consanguinity ; Erythroblasts ; Erythroblasts - enzymology ; Erythroblasts - pathology ; Erythrocytes ; Gene Expression ; Glycolysis ; Glycolysis - genetics ; Hemolytic anemia ; Hemopoiesis ; Homozygote ; Humans ; Kinases ; Life span ; Male ; Membrane Proteins - deficiency ; Membrane Proteins - genetics ; mRNA ; Mutation ; Myeloid Cells - cytology ; Myeloid Cells - enzymology ; PKM2 ; PK‐R ; Primary Cell Culture ; Pyruvate kinase ; Pyruvate Kinase - deficiency ; Pyruvate Kinase - genetics ; Pyruvate Metabolism, Inborn Errors - enzymology ; Pyruvate Metabolism, Inborn Errors - genetics ; Pyruvate Metabolism, Inborn Errors - pathology ; Pyruvic acid ; red blood cell ; reticulocyte ; Reticulocytes ; Reticulocytes - enzymology ; Reticulocytes - pathology ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Thyroid Hormone-Binding Proteins ; Thyroid Hormones - deficiency ; Thyroid Hormones - genetics ; Western blotting</subject><ispartof>European journal of haematology, 2017-06, Vol.98 (6), p.584-589</ispartof><rights>2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</citedby><cites>FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</cites><orcidid>0000-0002-2864-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28295642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klei, Thomas R.L.</creatorcontrib><creatorcontrib>Kheradmand Kia, Sima</creatorcontrib><creatorcontrib>Veldthuis, Martijn</creatorcontrib><creatorcontrib>Beuger, Boukje M.</creatorcontrib><creatorcontrib>Geissler, Judy</creatorcontrib><creatorcontrib>Dehbozorgian, Javad</creatorcontrib><creatorcontrib>Karimi, Mehran</creatorcontrib><creatorcontrib>Bruggen, Robin</creatorcontrib><creatorcontrib>Zwieten, Rob</creatorcontrib><title>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</title><title>European journal of haematology</title><addtitle>Eur J Haematol</addtitle><description>Objective
Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive.
Methods
PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development.
Results
We found a novel homozygous mutation (c.583G>A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2.
Conclusions
We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors.</description><subject>Anemia</subject><subject>Anemia, Hemolytic, Congenital Nonspherocytic - enzymology</subject><subject>Anemia, Hemolytic, Congenital Nonspherocytic - genetics</subject><subject>Anemia, Hemolytic, Congenital Nonspherocytic - pathology</subject><subject>Base Sequence</subject><subject>Blood</subject><subject>Carrier Proteins - genetics</subject><subject>Cell Differentiation</subject><subject>Child</subject><subject>Consanguinity</subject><subject>Erythroblasts</subject><subject>Erythroblasts - enzymology</subject><subject>Erythroblasts - pathology</subject><subject>Erythrocytes</subject><subject>Gene Expression</subject><subject>Glycolysis</subject><subject>Glycolysis - genetics</subject><subject>Hemolytic anemia</subject><subject>Hemopoiesis</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life span</subject><subject>Male</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - genetics</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Myeloid Cells - cytology</subject><subject>Myeloid Cells - enzymology</subject><subject>PKM2</subject><subject>PK‐R</subject><subject>Primary Cell Culture</subject><subject>Pyruvate kinase</subject><subject>Pyruvate Kinase - deficiency</subject><subject>Pyruvate Kinase - genetics</subject><subject>Pyruvate Metabolism, Inborn Errors - enzymology</subject><subject>Pyruvate Metabolism, Inborn Errors - genetics</subject><subject>Pyruvate Metabolism, Inborn Errors - pathology</subject><subject>Pyruvic acid</subject><subject>red blood cell</subject><subject>reticulocyte</subject><subject>Reticulocytes</subject><subject>Reticulocytes - enzymology</subject><subject>Reticulocytes - pathology</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Thyroid Hormone-Binding Proteins</subject><subject>Thyroid Hormones - deficiency</subject><subject>Thyroid Hormones - genetics</subject><subject>Western blotting</subject><issn>0902-4441</issn><issn>1600-0609</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10cFu1DAQBmALgehSOPACyBIXOKS1Yyd2jqgqlLISqIKzNeuMWS9JHOxkUW59BJ6RJ8Htlh6Q6sv48PnXWD8hLzk74fmc4m57wkut5COy4jVjBatZ85isWMPKQkrJj8izlHaMsbLh6ik5KnXZVLUsV-T6CpNvZ-jouMR5DxPSH36AhBTs5Pd-Wqgf6JdP66s_179bdN56HCaKcZm2MfiWjhHtHFOIiQZHgY4w3Yo0O4fRD9-pi6GnCfcYkW4B-9Atk7cUhnz38Jw8cdAlfHE3j8m39-dfzy6K9ecPH8_erQsrKiELkb_Xgq3BsY2UG8UlCs4aYCiskAK0rl2jVK1Eq3UFKGtnVVXVtoWqaUUpjsmbQ-4Yw88Z02R6nyx2HQwY5mS4VkrnB1Jm-vo_ugtzHPJ2hjclk4probN6e1A2hpQiOjNG30NcDGfmphaTazG3tWT76i5x3vTY3st_PWRwegC_fIfLw0nm_PLiEPkXbB-Y8g</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Klei, Thomas R.L.</creator><creator>Kheradmand Kia, Sima</creator><creator>Veldthuis, Martijn</creator><creator>Beuger, Boukje M.</creator><creator>Geissler, Judy</creator><creator>Dehbozorgian, Javad</creator><creator>Karimi, Mehran</creator><creator>Bruggen, Robin</creator><creator>Zwieten, Rob</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2864-4073</orcidid></search><sort><creationdate>201706</creationdate><title>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</title><author>Klei, Thomas R.L. ; Kheradmand Kia, Sima ; Veldthuis, Martijn ; Beuger, Boukje M. ; Geissler, Judy ; Dehbozorgian, Javad ; Karimi, Mehran ; Bruggen, Robin ; Zwieten, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anemia</topic><topic>Anemia, Hemolytic, Congenital Nonspherocytic - enzymology</topic><topic>Anemia, Hemolytic, Congenital Nonspherocytic - genetics</topic><topic>Anemia, Hemolytic, Congenital Nonspherocytic - pathology</topic><topic>Base Sequence</topic><topic>Blood</topic><topic>Carrier Proteins - genetics</topic><topic>Cell Differentiation</topic><topic>Child</topic><topic>Consanguinity</topic><topic>Erythroblasts</topic><topic>Erythroblasts - enzymology</topic><topic>Erythroblasts - pathology</topic><topic>Erythrocytes</topic><topic>Gene Expression</topic><topic>Glycolysis</topic><topic>Glycolysis - genetics</topic><topic>Hemolytic anemia</topic><topic>Hemopoiesis</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life span</topic><topic>Male</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - genetics</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Myeloid Cells - cytology</topic><topic>Myeloid Cells - enzymology</topic><topic>PKM2</topic><topic>PK‐R</topic><topic>Primary Cell Culture</topic><topic>Pyruvate kinase</topic><topic>Pyruvate Kinase - deficiency</topic><topic>Pyruvate Kinase - genetics</topic><topic>Pyruvate Metabolism, Inborn Errors - enzymology</topic><topic>Pyruvate Metabolism, Inborn Errors - genetics</topic><topic>Pyruvate Metabolism, Inborn Errors - pathology</topic><topic>Pyruvic acid</topic><topic>red blood cell</topic><topic>reticulocyte</topic><topic>Reticulocytes</topic><topic>Reticulocytes - enzymology</topic><topic>Reticulocytes - pathology</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Thyroid Hormone-Binding Proteins</topic><topic>Thyroid Hormones - deficiency</topic><topic>Thyroid Hormones - genetics</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klei, Thomas R.L.</creatorcontrib><creatorcontrib>Kheradmand Kia, Sima</creatorcontrib><creatorcontrib>Veldthuis, Martijn</creatorcontrib><creatorcontrib>Beuger, Boukje M.</creatorcontrib><creatorcontrib>Geissler, Judy</creatorcontrib><creatorcontrib>Dehbozorgian, Javad</creatorcontrib><creatorcontrib>Karimi, Mehran</creatorcontrib><creatorcontrib>Bruggen, Robin</creatorcontrib><creatorcontrib>Zwieten, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klei, Thomas R.L.</au><au>Kheradmand Kia, Sima</au><au>Veldthuis, Martijn</au><au>Beuger, Boukje M.</au><au>Geissler, Judy</au><au>Dehbozorgian, Javad</au><au>Karimi, Mehran</au><au>Bruggen, Robin</au><au>Zwieten, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</atitle><jtitle>European journal of haematology</jtitle><addtitle>Eur J Haematol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>98</volume><issue>6</issue><spage>584</spage><epage>589</epage><pages>584-589</pages><issn>0902-4441</issn><eissn>1600-0609</eissn><abstract>Objective
Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive.
Methods
PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development.
Results
We found a novel homozygous mutation (c.583G>A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2.
Conclusions
We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28295642</pmid><doi>10.1111/ejh.12874</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2864-4073</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0902-4441 |
ispartof | European journal of haematology, 2017-06, Vol.98 (6), p.584-589 |
issn | 0902-4441 1600-0609 |
language | eng |
recordid | cdi_proquest_miscellaneous_1877855644 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anemia Anemia, Hemolytic, Congenital Nonspherocytic - enzymology Anemia, Hemolytic, Congenital Nonspherocytic - genetics Anemia, Hemolytic, Congenital Nonspherocytic - pathology Base Sequence Blood Carrier Proteins - genetics Cell Differentiation Child Consanguinity Erythroblasts Erythroblasts - enzymology Erythroblasts - pathology Erythrocytes Gene Expression Glycolysis Glycolysis - genetics Hemolytic anemia Hemopoiesis Homozygote Humans Kinases Life span Male Membrane Proteins - deficiency Membrane Proteins - genetics mRNA Mutation Myeloid Cells - cytology Myeloid Cells - enzymology PKM2 PK‐R Primary Cell Culture Pyruvate kinase Pyruvate Kinase - deficiency Pyruvate Kinase - genetics Pyruvate Metabolism, Inborn Errors - enzymology Pyruvate Metabolism, Inborn Errors - genetics Pyruvate Metabolism, Inborn Errors - pathology Pyruvic acid red blood cell reticulocyte Reticulocytes Reticulocytes - enzymology Reticulocytes - pathology RNA, Messenger - genetics RNA, Messenger - metabolism Thyroid Hormone-Binding Proteins Thyroid Hormones - deficiency Thyroid Hormones - genetics Western blotting |
title | Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20pyruvate%20kinase%20activity%20in%20PKLR%E2%80%90deficient%20erythroid%20precursors%20of%20a%20patient%20suffering%20from%20severe%20haemolytic%20anaemia&rft.jtitle=European%20journal%20of%20haematology&rft.au=Klei,%20Thomas%20R.L.&rft.date=2017-06&rft.volume=98&rft.issue=6&rft.spage=584&rft.epage=589&rft.pages=584-589&rft.issn=0902-4441&rft.eissn=1600-0609&rft_id=info:doi/10.1111/ejh.12874&rft_dat=%3Cproquest_cross%3E1877855644%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920471838&rft_id=info:pmid/28295642&rfr_iscdi=true |