Loading…

Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia

Objective Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R defici...

Full description

Saved in:
Bibliographic Details
Published in:European journal of haematology 2017-06, Vol.98 (6), p.584-589
Main Authors: Klei, Thomas R.L., Kheradmand Kia, Sima, Veldthuis, Martijn, Beuger, Boukje M., Geissler, Judy, Dehbozorgian, Javad, Karimi, Mehran, Bruggen, Robin, Zwieten, Rob
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323
cites cdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323
container_end_page 589
container_issue 6
container_start_page 584
container_title European journal of haematology
container_volume 98
creator Klei, Thomas R.L.
Kheradmand Kia, Sima
Veldthuis, Martijn
Beuger, Boukje M.
Geissler, Judy
Dehbozorgian, Javad
Karimi, Mehran
Bruggen, Robin
Zwieten, Rob
description Objective Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive. Methods PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development. Results We found a novel homozygous mutation (c.583G>A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2. Conclusions We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors.
doi_str_mv 10.1111/ejh.12874
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1877855644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877855644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</originalsourceid><addsrcrecordid>eNp10cFu1DAQBmALgehSOPACyBIXOKS1Yyd2jqgqlLISqIKzNeuMWS9JHOxkUW59BJ6RJ8Htlh6Q6sv48PnXWD8hLzk74fmc4m57wkut5COy4jVjBatZ85isWMPKQkrJj8izlHaMsbLh6ik5KnXZVLUsV-T6CpNvZ-jouMR5DxPSH36AhBTs5Pd-Wqgf6JdP66s_179bdN56HCaKcZm2MfiWjhHtHFOIiQZHgY4w3Yo0O4fRD9-pi6GnCfcYkW4B-9Atk7cUhnz38Jw8cdAlfHE3j8m39-dfzy6K9ecPH8_erQsrKiELkb_Xgq3BsY2UG8UlCs4aYCiskAK0rl2jVK1Eq3UFKGtnVVXVtoWqaUUpjsmbQ-4Yw88Z02R6nyx2HQwY5mS4VkrnB1Jm-vo_ugtzHPJ2hjclk4probN6e1A2hpQiOjNG30NcDGfmphaTazG3tWT76i5x3vTY3st_PWRwegC_fIfLw0nm_PLiEPkXbB-Y8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920471838</pqid></control><display><type>article</type><title>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Klei, Thomas R.L. ; Kheradmand Kia, Sima ; Veldthuis, Martijn ; Beuger, Boukje M. ; Geissler, Judy ; Dehbozorgian, Javad ; Karimi, Mehran ; Bruggen, Robin ; Zwieten, Rob</creator><creatorcontrib>Klei, Thomas R.L. ; Kheradmand Kia, Sima ; Veldthuis, Martijn ; Beuger, Boukje M. ; Geissler, Judy ; Dehbozorgian, Javad ; Karimi, Mehran ; Bruggen, Robin ; Zwieten, Rob</creatorcontrib><description>Objective Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive. Methods PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development. Results We found a novel homozygous mutation (c.583G&gt;A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2. Conclusions We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors.</description><identifier>ISSN: 0902-4441</identifier><identifier>EISSN: 1600-0609</identifier><identifier>DOI: 10.1111/ejh.12874</identifier><identifier>PMID: 28295642</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anemia ; Anemia, Hemolytic, Congenital Nonspherocytic - enzymology ; Anemia, Hemolytic, Congenital Nonspherocytic - genetics ; Anemia, Hemolytic, Congenital Nonspherocytic - pathology ; Base Sequence ; Blood ; Carrier Proteins - genetics ; Cell Differentiation ; Child ; Consanguinity ; Erythroblasts ; Erythroblasts - enzymology ; Erythroblasts - pathology ; Erythrocytes ; Gene Expression ; Glycolysis ; Glycolysis - genetics ; Hemolytic anemia ; Hemopoiesis ; Homozygote ; Humans ; Kinases ; Life span ; Male ; Membrane Proteins - deficiency ; Membrane Proteins - genetics ; mRNA ; Mutation ; Myeloid Cells - cytology ; Myeloid Cells - enzymology ; PKM2 ; PK‐R ; Primary Cell Culture ; Pyruvate kinase ; Pyruvate Kinase - deficiency ; Pyruvate Kinase - genetics ; Pyruvate Metabolism, Inborn Errors - enzymology ; Pyruvate Metabolism, Inborn Errors - genetics ; Pyruvate Metabolism, Inborn Errors - pathology ; Pyruvic acid ; red blood cell ; reticulocyte ; Reticulocytes ; Reticulocytes - enzymology ; Reticulocytes - pathology ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Thyroid Hormone-Binding Proteins ; Thyroid Hormones - deficiency ; Thyroid Hormones - genetics ; Western blotting</subject><ispartof>European journal of haematology, 2017-06, Vol.98 (6), p.584-589</ispartof><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</citedby><cites>FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</cites><orcidid>0000-0002-2864-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28295642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klei, Thomas R.L.</creatorcontrib><creatorcontrib>Kheradmand Kia, Sima</creatorcontrib><creatorcontrib>Veldthuis, Martijn</creatorcontrib><creatorcontrib>Beuger, Boukje M.</creatorcontrib><creatorcontrib>Geissler, Judy</creatorcontrib><creatorcontrib>Dehbozorgian, Javad</creatorcontrib><creatorcontrib>Karimi, Mehran</creatorcontrib><creatorcontrib>Bruggen, Robin</creatorcontrib><creatorcontrib>Zwieten, Rob</creatorcontrib><title>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</title><title>European journal of haematology</title><addtitle>Eur J Haematol</addtitle><description>Objective Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive. Methods PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development. Results We found a novel homozygous mutation (c.583G&gt;A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2. Conclusions We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors.</description><subject>Anemia</subject><subject>Anemia, Hemolytic, Congenital Nonspherocytic - enzymology</subject><subject>Anemia, Hemolytic, Congenital Nonspherocytic - genetics</subject><subject>Anemia, Hemolytic, Congenital Nonspherocytic - pathology</subject><subject>Base Sequence</subject><subject>Blood</subject><subject>Carrier Proteins - genetics</subject><subject>Cell Differentiation</subject><subject>Child</subject><subject>Consanguinity</subject><subject>Erythroblasts</subject><subject>Erythroblasts - enzymology</subject><subject>Erythroblasts - pathology</subject><subject>Erythrocytes</subject><subject>Gene Expression</subject><subject>Glycolysis</subject><subject>Glycolysis - genetics</subject><subject>Hemolytic anemia</subject><subject>Hemopoiesis</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Kinases</subject><subject>Life span</subject><subject>Male</subject><subject>Membrane Proteins - deficiency</subject><subject>Membrane Proteins - genetics</subject><subject>mRNA</subject><subject>Mutation</subject><subject>Myeloid Cells - cytology</subject><subject>Myeloid Cells - enzymology</subject><subject>PKM2</subject><subject>PK‐R</subject><subject>Primary Cell Culture</subject><subject>Pyruvate kinase</subject><subject>Pyruvate Kinase - deficiency</subject><subject>Pyruvate Kinase - genetics</subject><subject>Pyruvate Metabolism, Inborn Errors - enzymology</subject><subject>Pyruvate Metabolism, Inborn Errors - genetics</subject><subject>Pyruvate Metabolism, Inborn Errors - pathology</subject><subject>Pyruvic acid</subject><subject>red blood cell</subject><subject>reticulocyte</subject><subject>Reticulocytes</subject><subject>Reticulocytes - enzymology</subject><subject>Reticulocytes - pathology</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Thyroid Hormone-Binding Proteins</subject><subject>Thyroid Hormones - deficiency</subject><subject>Thyroid Hormones - genetics</subject><subject>Western blotting</subject><issn>0902-4441</issn><issn>1600-0609</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10cFu1DAQBmALgehSOPACyBIXOKS1Yyd2jqgqlLISqIKzNeuMWS9JHOxkUW59BJ6RJ8Htlh6Q6sv48PnXWD8hLzk74fmc4m57wkut5COy4jVjBatZ85isWMPKQkrJj8izlHaMsbLh6ik5KnXZVLUsV-T6CpNvZ-jouMR5DxPSH36AhBTs5Pd-Wqgf6JdP66s_179bdN56HCaKcZm2MfiWjhHtHFOIiQZHgY4w3Yo0O4fRD9-pi6GnCfcYkW4B-9Atk7cUhnz38Jw8cdAlfHE3j8m39-dfzy6K9ecPH8_erQsrKiELkb_Xgq3BsY2UG8UlCs4aYCiskAK0rl2jVK1Eq3UFKGtnVVXVtoWqaUUpjsmbQ-4Yw88Z02R6nyx2HQwY5mS4VkrnB1Jm-vo_ugtzHPJ2hjclk4probN6e1A2hpQiOjNG30NcDGfmphaTazG3tWT76i5x3vTY3st_PWRwegC_fIfLw0nm_PLiEPkXbB-Y8g</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Klei, Thomas R.L.</creator><creator>Kheradmand Kia, Sima</creator><creator>Veldthuis, Martijn</creator><creator>Beuger, Boukje M.</creator><creator>Geissler, Judy</creator><creator>Dehbozorgian, Javad</creator><creator>Karimi, Mehran</creator><creator>Bruggen, Robin</creator><creator>Zwieten, Rob</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2864-4073</orcidid></search><sort><creationdate>201706</creationdate><title>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</title><author>Klei, Thomas R.L. ; Kheradmand Kia, Sima ; Veldthuis, Martijn ; Beuger, Boukje M. ; Geissler, Judy ; Dehbozorgian, Javad ; Karimi, Mehran ; Bruggen, Robin ; Zwieten, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anemia</topic><topic>Anemia, Hemolytic, Congenital Nonspherocytic - enzymology</topic><topic>Anemia, Hemolytic, Congenital Nonspherocytic - genetics</topic><topic>Anemia, Hemolytic, Congenital Nonspherocytic - pathology</topic><topic>Base Sequence</topic><topic>Blood</topic><topic>Carrier Proteins - genetics</topic><topic>Cell Differentiation</topic><topic>Child</topic><topic>Consanguinity</topic><topic>Erythroblasts</topic><topic>Erythroblasts - enzymology</topic><topic>Erythroblasts - pathology</topic><topic>Erythrocytes</topic><topic>Gene Expression</topic><topic>Glycolysis</topic><topic>Glycolysis - genetics</topic><topic>Hemolytic anemia</topic><topic>Hemopoiesis</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Kinases</topic><topic>Life span</topic><topic>Male</topic><topic>Membrane Proteins - deficiency</topic><topic>Membrane Proteins - genetics</topic><topic>mRNA</topic><topic>Mutation</topic><topic>Myeloid Cells - cytology</topic><topic>Myeloid Cells - enzymology</topic><topic>PKM2</topic><topic>PK‐R</topic><topic>Primary Cell Culture</topic><topic>Pyruvate kinase</topic><topic>Pyruvate Kinase - deficiency</topic><topic>Pyruvate Kinase - genetics</topic><topic>Pyruvate Metabolism, Inborn Errors - enzymology</topic><topic>Pyruvate Metabolism, Inborn Errors - genetics</topic><topic>Pyruvate Metabolism, Inborn Errors - pathology</topic><topic>Pyruvic acid</topic><topic>red blood cell</topic><topic>reticulocyte</topic><topic>Reticulocytes</topic><topic>Reticulocytes - enzymology</topic><topic>Reticulocytes - pathology</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Thyroid Hormone-Binding Proteins</topic><topic>Thyroid Hormones - deficiency</topic><topic>Thyroid Hormones - genetics</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klei, Thomas R.L.</creatorcontrib><creatorcontrib>Kheradmand Kia, Sima</creatorcontrib><creatorcontrib>Veldthuis, Martijn</creatorcontrib><creatorcontrib>Beuger, Boukje M.</creatorcontrib><creatorcontrib>Geissler, Judy</creatorcontrib><creatorcontrib>Dehbozorgian, Javad</creatorcontrib><creatorcontrib>Karimi, Mehran</creatorcontrib><creatorcontrib>Bruggen, Robin</creatorcontrib><creatorcontrib>Zwieten, Rob</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klei, Thomas R.L.</au><au>Kheradmand Kia, Sima</au><au>Veldthuis, Martijn</au><au>Beuger, Boukje M.</au><au>Geissler, Judy</au><au>Dehbozorgian, Javad</au><au>Karimi, Mehran</au><au>Bruggen, Robin</au><au>Zwieten, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia</atitle><jtitle>European journal of haematology</jtitle><addtitle>Eur J Haematol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>98</volume><issue>6</issue><spage>584</spage><epage>589</epage><pages>584-589</pages><issn>0902-4441</issn><eissn>1600-0609</eissn><abstract>Objective Here, we present a 7‐year‐old patient suffering from severe haemolytic anaemia. The most common cause of chronic hereditary non‐spherocytic haemolytic anaemia is red blood cell pyruvate kinase (PK‐R) deficiency. Because red blood cells rely solely on glycolysis to generate ATP, PK‐R deficiency can severely impact energy supply and cause reduction in red blood cell lifespan. We determined the underlying cause of the anaemia and investigated how erythroid precursors in the patient survive. Methods PK activity assays, Western blot and Sanger sequencing were employed to determine the underlying cause of the anaemia. Patient erythroblasts were cultured and reticulocytes were isolated to determine PK‐R and PKM2 contribution to glycolytic activity during erythrocyte development. Results We found a novel homozygous mutation (c.583G&gt;A) in the PK‐R coding gene (PKLR). Although this mutation did not influence PKLR mRNA production, no PK‐R protein could be detected in the red blood cells nor in its precursors. In spite of the absence of PK‐R, the reticulocytes of the patient exhibited 20% PK activity compared with control. Western blotting revealed that patient erythroid precursors, like controls, express residual PKM2. Conclusions We conclude that PKM2 rescues glycolysis in PK‐R‐deficient erythroid precursors.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28295642</pmid><doi>10.1111/ejh.12874</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2864-4073</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0902-4441
ispartof European journal of haematology, 2017-06, Vol.98 (6), p.584-589
issn 0902-4441
1600-0609
language eng
recordid cdi_proquest_miscellaneous_1877855644
source Wiley-Blackwell Read & Publish Collection
subjects Anemia
Anemia, Hemolytic, Congenital Nonspherocytic - enzymology
Anemia, Hemolytic, Congenital Nonspherocytic - genetics
Anemia, Hemolytic, Congenital Nonspherocytic - pathology
Base Sequence
Blood
Carrier Proteins - genetics
Cell Differentiation
Child
Consanguinity
Erythroblasts
Erythroblasts - enzymology
Erythroblasts - pathology
Erythrocytes
Gene Expression
Glycolysis
Glycolysis - genetics
Hemolytic anemia
Hemopoiesis
Homozygote
Humans
Kinases
Life span
Male
Membrane Proteins - deficiency
Membrane Proteins - genetics
mRNA
Mutation
Myeloid Cells - cytology
Myeloid Cells - enzymology
PKM2
PK‐R
Primary Cell Culture
Pyruvate kinase
Pyruvate Kinase - deficiency
Pyruvate Kinase - genetics
Pyruvate Metabolism, Inborn Errors - enzymology
Pyruvate Metabolism, Inborn Errors - genetics
Pyruvate Metabolism, Inborn Errors - pathology
Pyruvic acid
red blood cell
reticulocyte
Reticulocytes
Reticulocytes - enzymology
Reticulocytes - pathology
RNA, Messenger - genetics
RNA, Messenger - metabolism
Thyroid Hormone-Binding Proteins
Thyroid Hormones - deficiency
Thyroid Hormones - genetics
Western blotting
title Residual pyruvate kinase activity in PKLR‐deficient erythroid precursors of a patient suffering from severe haemolytic anaemia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20pyruvate%20kinase%20activity%20in%20PKLR%E2%80%90deficient%20erythroid%20precursors%20of%20a%20patient%20suffering%20from%20severe%20haemolytic%20anaemia&rft.jtitle=European%20journal%20of%20haematology&rft.au=Klei,%20Thomas%20R.L.&rft.date=2017-06&rft.volume=98&rft.issue=6&rft.spage=584&rft.epage=589&rft.pages=584-589&rft.issn=0902-4441&rft.eissn=1600-0609&rft_id=info:doi/10.1111/ejh.12874&rft_dat=%3Cproquest_cross%3E1877855644%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3534-3287dac6af0b44b714e3109a0e3c343a886f977673d885ae46fc7556cda59d323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920471838&rft_id=info:pmid/28295642&rfr_iscdi=true