Loading…
Hidden Treatments in Ecological Experiments: Re-Evaluating the Ecosystem Function of Biodiversity
Interactions between biotic and abiotic processes complicate the design and interpretation of ecological experiments. Separating causality from simple correlation requires distinguishing among experimental treatments, experimental responses, and the many processes and properties that are correlated...
Saved in:
Published in: | Oecologia 1997-05, Vol.110 (4), p.449-460 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interactions between biotic and abiotic processes complicate the design and interpretation of ecological experiments. Separating causality from simple correlation requires distinguishing among experimental treatments, experimental responses, and the many processes and properties that are correlated with either the treatments or the responses, or both. When an experimental manipulation has multiple components, but only one of them is identified as the experimental treatment, erroneous conclusions about cause and effect relationships are likely because the actual cause of any observed response may be ignored in the interpretation of the experimental results. This unrecognized cause of an observed response can be considered a "hidden treatment." Three types of hidden treatments are potential problems in biodiversity experiments: (1) abiotic conditions, such as resource levels, or biotic conditions, such as predation, which are intentionally or unintentionally altered in order to create differences in species numbers for "diversity" treatments; (2) non-random selection of species with particular attributes that produce treatment differences that exceed those due to "diversity" alone; and (3) the increased statistical probability of including a species with a dominant negative or positive effect (e.g., dense shade, or nitrogen fixation) in randomly selected groups of species of increasing number or "diversity." In each of these cases, treatment responses that are actually the result of the "hidden treatment" may be inadvertently attributed to variation in species diversity. Case studies re-evaluating three different types of biodiversity experiments demonstrate that the increases found in such ecosystem properties as productivity, nutrient use efficiency, and stability (all of which were attributed to higher levels of species diversity) were actually caused by "hidden treatments" that altered plant biomass and productivity. |
---|---|
ISSN: | 0029-8549 1432-1939 |
DOI: | 10.1007/s004420050180 |