Loading…

Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance

Spartina alterniflora has been reported to lose significant amounts of oxygen to its rhizosphere with potentially important effects on salt-marsh biogeochemical cycling and plant productivity. The potential significance of this oxidative pathway was evaluated using laboratory split-chamber experimen...

Full description

Saved in:
Bibliographic Details
Published in:Oecologia 1994-05, Vol.97 (4), p.431-438
Main Authors: Howes, B.L, Teal, J.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spartina alterniflora has been reported to lose significant amounts of oxygen to its rhizosphere with potentially important effects on salt-marsh biogeochemical cycling and plant productivity. The potential significance of this oxidative pathway was evaluated using laboratory split-chamber experiments to quantify oxygen loss from intact root systems under a wide variety of pre-treatment and incubation conditions including antibiotics to inhibit microbial respiration. The aerenchyma system of S. alterniflora was found to transport O₂, N₂, Ar, and CH₄ from above-ground sources to its below-ground roots and rhizomes. While non-respiratory gases were observed to move from the lacunae to water bathing the root systems, net O₂ loss did not occur; instead oxygen present outside of the roots/rhizomes was consumed. Net oxygen loss was found when resistance to gas transport was reduced in the lacunae-rhizosphere pathway by placing the root systems in a gas phase and when plant respiration was significantly reduced. Root system respiration appeared to be the major variable in the plant oxygen balance. When root and rhizome respiration was inhibited using poisons or lowered by cooling, the oxygen deficit was greatly reduced and oxygen loss was indicated. The effect of seasonal temperature changes on root system "oxygen deficit" presents a possible explanation as to why Spartina produces root systems with respiration rates that cannot be supported by gas transport. Overall, while oxygen loss from individual plant roots is likely, integrating measured root system oxygen loss with geochemical data indicates that the mass amount of oxygen lost from S. alterniflora root systems is small compared to the total oxygen balance of vegetated salt marsh sediments.
ISSN:0029-8549
1432-1939
DOI:10.1007/BF00325879