Loading…
Chemo-Catalyzed Pathways to Lactic Acid and Lactates
Lactic acid is an important building block for the production of biodegradable polymers (PLLA, PDLA, etc.) as well as starting material for the pharmaceutical industry. The current production of this chiral compound is dominated by fermentation processes. However many catalytic reactions that could...
Saved in:
Published in: | Advanced synthesis & catalysis 2016-12, Vol.358 (24), p.3910-3931 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lactic acid is an important building block for the production of biodegradable polymers (PLLA, PDLA, etc.) as well as starting material for the pharmaceutical industry. The current production of this chiral compound is dominated by fermentation processes. However many catalytic reactions that could be used for manufacturing lactic acid were developed in the past three decades. High reaction rates and simple separation of products in comparison to fermentation characterize many of these processes. Excellent stereoselectivities up to 99% ee could be achieved. This review aims to give a critical overview of chemical processes applying catalysis as an alternative for the production of both enantiomerically pure and racemic lactic acid and lactates. The efficiency and economy of these processes are analyzed. |
---|---|
ISSN: | 1615-4150 1615-4169 |
DOI: | 10.1002/adsc.201600768 |