Loading…
Large-scale segmentation errors in optical gratings and their unique effect onto optical scattering spectra
In this paper, we analyze the influence of large-scale segmentation errors in the morphology of high-performance optical gratings. It is thus assumed that the optical grating under consideration (typical lateral extends S are 10–1000 mm) can be spatially decomposed into a great many but unique sub-s...
Saved in:
Published in: | Applied physics. B, Lasers and optics Lasers and optics, 2016-08, Vol.122 (8), p.1-12, Article 222 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we analyze the influence of large-scale segmentation errors in the morphology of high-performance optical gratings. It is thus assumed that the optical grating under consideration (typical lateral extends
S
are 10–1000 mm) can be spatially decomposed into a great many but unique sub-segments (
≪
S
; typical extends are 10–100
μ
m
). Any violation of the perfect periodicity will result in the generation of stray light, especially Rowland ghosts, which radiate into a small angular region around the grating’s diffraction orders. In this paper, we focus on three different kinds of segmentation errors. On the one hand, there are statistic as well as deterministic alignment errors between otherwise perfect sub-segments. On the other hand, we analyze the effect of chirping of geometrical parameters, i.e., the groove width, within every sub-segment. Most importantly, we find that the particular type of imperfection results in a unique characteristic of the according stray light spectrum which thus acts as a fingerprint. We come to this conclusion on three different ways. First, we rely on a simple theoretical model that is based on scalar diffraction theory. Second, we have performed rigorous numerical simulations for a high aspect ratio purely dielectric spectrometer grating (
period
=
667
nm
). Third, the very same grating was then fabricated by e-beam lithography and its stray light spectrum was measured with a purposely designed optical setup. Eventually, all different routes to analyze the problem turn out to be in very good agreement, and we are confident that stray light measurements can be used as an important tool in the detection of fabrication imperfections. |
---|---|
ISSN: | 0946-2171 1432-0649 |
DOI: | 10.1007/s00340-016-6496-7 |