Loading…

Creep- and fatigue-resistant, rapid piezoresistive responses of elastomeric graphene-coated carbon nanotube aerogels over a wide pressure range

Lightweight, flexible piezoresistive materials with wide operational pressure ranges are in demand for applications such as human physical activity and health monitoring, robotics, and for functional interfacing between living systems and wearable electronics. Piezoresistivity of many elastomeric fo...

Full description

Saved in:
Bibliographic Details
Published in:Cellular polymers 2017-01, Vol.9 (3), p.1128-1135
Main Authors: Tsui, Michelle N, Islam, Mohammad F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lightweight, flexible piezoresistive materials with wide operational pressure ranges are in demand for applications such as human physical activity and health monitoring, robotics, and for functional interfacing between living systems and wearable electronics. Piezoresistivity of many elastomeric foams of polymers and carbon allotropes satisfies much of the required characteristics for these applications except creep and fatigue resistance due to their viscoelasticity, critically limiting the reliability and lifetime of integrated devices. We report the piezoresistive responses from aerogels of graphene-coated single-walled carbon nanotubes (SWCNTs), made using a facile and versatile sol-gel method. Graphene crosslinks the junctions of the underlying random network of SWCNTs, generating lightweight elastomeric aerogels with a mass density of ≈11 mg mL (volume fraction ≈7.7 × 10 ) and a Young's modulus of ≈0.4 MPa. The piezoresistivity of these aerogels spans wide compressive pressures up to at least 120 kPa with sensitivity that exhibit ultrafast temporal responses of
ISSN:2040-3364
0262-4893
2040-3372
DOI:10.1039/c6nr07432d