Loading…
Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators
Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maxim...
Saved in:
Published in: | Computational mathematics and modeling 2016, Vol.27 (1), p.122-131 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 131 |
container_issue | 1 |
container_start_page | 122 |
container_title | Computational mathematics and modeling |
container_volume | 27 |
creator | Ismailov, I. G. |
description | Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article. |
doi_str_mv | 10.1007/s10598-015-9307-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879988577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879988577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1889-de4e560f18c7e40467fb000b009d832ea07993fc29587c475d6a554dd19b738b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C5LN9FkMmmSpdR6gUoFFboLM5OMpkyTaZIi8_ZmGNcuzg3-_3DOB8A1wbcEY34XCWZSIEwYkhRzJE_AjDBOkaB8e5p7XC5QIej2HFzEuMMYi4LiGdCbPtl91dk0wKV32ibrXYTWjVMKvoNvwded2UfY-gDfh5jG_sHEJtjaaFgPcHU4VpPtx6Zv-OqdT94ZuOlNqJIP8RKctVUXzdVfnYPPx9XH8hmtN08vy_s1aogQEmlTGrbALRENN2U-mLd1PjSH1IIWpsJcSto2hWSCNyVnelExVmpNZM2pqOkc3Ex7--APRxOT2tvYmK6rnPHHqIjIC4RgnGcpmaRN8DEG06o-ZA5hUASrkaiaiKpMVI1Ec5qDYvLErHVfJqidPwaXP_rH9AvzJHop</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879988577</pqid></control><display><type>article</type><title>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</title><source>Springer Link</source><creator>Ismailov, I. G.</creator><creatorcontrib>Ismailov, I. G.</creatorcontrib><description>Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article.</description><identifier>ISSN: 1046-283X</identifier><identifier>EISSN: 1573-837X</identifier><identifier>DOI: 10.1007/s10598-015-9307-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Constraints ; Control systems ; II. Informatics ; Lagrange multipliers ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Operators (mathematics) ; Optimization</subject><ispartof>Computational mathematics and modeling, 2016, Vol.27 (1), p.122-131</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ismailov, I. G.</creatorcontrib><title>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</title><title>Computational mathematics and modeling</title><addtitle>Comput Math Model</addtitle><description>Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Control systems</subject><subject>II. Informatics</subject><subject>Lagrange multipliers</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><issn>1046-283X</issn><issn>1573-837X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C5LN9FkMmmSpdR6gUoFFboLM5OMpkyTaZIi8_ZmGNcuzg3-_3DOB8A1wbcEY34XCWZSIEwYkhRzJE_AjDBOkaB8e5p7XC5QIej2HFzEuMMYi4LiGdCbPtl91dk0wKV32ibrXYTWjVMKvoNvwded2UfY-gDfh5jG_sHEJtjaaFgPcHU4VpPtx6Zv-OqdT94ZuOlNqJIP8RKctVUXzdVfnYPPx9XH8hmtN08vy_s1aogQEmlTGrbALRENN2U-mLd1PjSH1IIWpsJcSto2hWSCNyVnelExVmpNZM2pqOkc3Ex7--APRxOT2tvYmK6rnPHHqIjIC4RgnGcpmaRN8DEG06o-ZA5hUASrkaiaiKpMVI1Ec5qDYvLErHVfJqidPwaXP_rH9AvzJHop</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Ismailov, I. G.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</title><author>Ismailov, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1889-de4e560f18c7e40467fb000b009d832ea07993fc29587c475d6a554dd19b738b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Control systems</topic><topic>II. Informatics</topic><topic>Lagrange multipliers</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ismailov, I. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ismailov, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</atitle><jtitle>Computational mathematics and modeling</jtitle><stitle>Comput Math Model</stitle><date>2016</date><risdate>2016</risdate><volume>27</volume><issue>1</issue><spage>122</spage><epage>131</epage><pages>122-131</pages><issn>1046-283X</issn><eissn>1573-837X</eissn><abstract>Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10598-015-9307-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-283X |
ispartof | Computational mathematics and modeling, 2016, Vol.27 (1), p.122-131 |
issn | 1046-283X 1573-837X |
language | eng |
recordid | cdi_proquest_miscellaneous_1879988577 |
source | Springer Link |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Constraints Control systems II. Informatics Lagrange multipliers Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Maximum principle Operators (mathematics) Optimization |
title | Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimality%20Conditions%20in%20Control%20Problems%20for%20Systems%20Described%20by%20Equations%20with%20Monotone%20Operators&rft.jtitle=Computational%20mathematics%20and%20modeling&rft.au=Ismailov,%20I.%20G.&rft.date=2016&rft.volume=27&rft.issue=1&rft.spage=122&rft.epage=131&rft.pages=122-131&rft.issn=1046-283X&rft.eissn=1573-837X&rft_id=info:doi/10.1007/s10598-015-9307-9&rft_dat=%3Cproquest_cross%3E1879988577%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1889-de4e560f18c7e40467fb000b009d832ea07993fc29587c475d6a554dd19b738b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879988577&rft_id=info:pmid/&rfr_iscdi=true |