Loading…

Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators

Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maxim...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and modeling 2016, Vol.27 (1), p.122-131
Main Author: Ismailov, I. G.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 131
container_issue 1
container_start_page 122
container_title Computational mathematics and modeling
container_volume 27
creator Ismailov, I. G.
description Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article.
doi_str_mv 10.1007/s10598-015-9307-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879988577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879988577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1889-de4e560f18c7e40467fb000b009d832ea07993fc29587c475d6a554dd19b738b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C5LN9FkMmmSpdR6gUoFFboLM5OMpkyTaZIi8_ZmGNcuzg3-_3DOB8A1wbcEY34XCWZSIEwYkhRzJE_AjDBOkaB8e5p7XC5QIej2HFzEuMMYi4LiGdCbPtl91dk0wKV32ibrXYTWjVMKvoNvwded2UfY-gDfh5jG_sHEJtjaaFgPcHU4VpPtx6Zv-OqdT94ZuOlNqJIP8RKctVUXzdVfnYPPx9XH8hmtN08vy_s1aogQEmlTGrbALRENN2U-mLd1PjSH1IIWpsJcSto2hWSCNyVnelExVmpNZM2pqOkc3Ex7--APRxOT2tvYmK6rnPHHqIjIC4RgnGcpmaRN8DEG06o-ZA5hUASrkaiaiKpMVI1Ec5qDYvLErHVfJqidPwaXP_rH9AvzJHop</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879988577</pqid></control><display><type>article</type><title>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</title><source>Springer Link</source><creator>Ismailov, I. G.</creator><creatorcontrib>Ismailov, I. G.</creatorcontrib><description>Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article.</description><identifier>ISSN: 1046-283X</identifier><identifier>EISSN: 1573-837X</identifier><identifier>DOI: 10.1007/s10598-015-9307-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Constraints ; Control systems ; II. Informatics ; Lagrange multipliers ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Operators (mathematics) ; Optimization</subject><ispartof>Computational mathematics and modeling, 2016, Vol.27 (1), p.122-131</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ismailov, I. G.</creatorcontrib><title>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</title><title>Computational mathematics and modeling</title><addtitle>Comput Math Model</addtitle><description>Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Control systems</subject><subject>II. Informatics</subject><subject>Lagrange multipliers</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><issn>1046-283X</issn><issn>1573-837X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C5LN9FkMmmSpdR6gUoFFboLM5OMpkyTaZIi8_ZmGNcuzg3-_3DOB8A1wbcEY34XCWZSIEwYkhRzJE_AjDBOkaB8e5p7XC5QIej2HFzEuMMYi4LiGdCbPtl91dk0wKV32ibrXYTWjVMKvoNvwded2UfY-gDfh5jG_sHEJtjaaFgPcHU4VpPtx6Zv-OqdT94ZuOlNqJIP8RKctVUXzdVfnYPPx9XH8hmtN08vy_s1aogQEmlTGrbALRENN2U-mLd1PjSH1IIWpsJcSto2hWSCNyVnelExVmpNZM2pqOkc3Ex7--APRxOT2tvYmK6rnPHHqIjIC4RgnGcpmaRN8DEG06o-ZA5hUASrkaiaiKpMVI1Ec5qDYvLErHVfJqidPwaXP_rH9AvzJHop</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Ismailov, I. G.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</title><author>Ismailov, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1889-de4e560f18c7e40467fb000b009d832ea07993fc29587c475d6a554dd19b738b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Control systems</topic><topic>II. Informatics</topic><topic>Lagrange multipliers</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ismailov, I. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ismailov, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators</atitle><jtitle>Computational mathematics and modeling</jtitle><stitle>Comput Math Model</stitle><date>2016</date><risdate>2016</risdate><volume>27</volume><issue>1</issue><spage>122</spage><epage>131</epage><pages>122-131</pages><issn>1046-283X</issn><eissn>1573-837X</eissn><abstract>Necessary and sufficient conditions of optimality are proved for some classes of constrained optimization problems with constraints in the form of operator and differential-operator equations. The optimization problems are considered subject to additional functional constraints. The Pontryagin maximum principle and the Lagrange multiplier rule are derived for the relevant problems from the optimality conditions proved in this article.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10598-015-9307-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-283X
ispartof Computational mathematics and modeling, 2016, Vol.27 (1), p.122-131
issn 1046-283X
1573-837X
language eng
recordid cdi_proquest_miscellaneous_1879988577
source Springer Link
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Constraints
Control systems
II. Informatics
Lagrange multipliers
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Maximum principle
Operators (mathematics)
Optimization
title Optimality Conditions in Control Problems for Systems Described by Equations with Monotone Operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimality%20Conditions%20in%20Control%20Problems%20for%20Systems%20Described%20by%20Equations%20with%20Monotone%20Operators&rft.jtitle=Computational%20mathematics%20and%20modeling&rft.au=Ismailov,%20I.%20G.&rft.date=2016&rft.volume=27&rft.issue=1&rft.spage=122&rft.epage=131&rft.pages=122-131&rft.issn=1046-283X&rft.eissn=1573-837X&rft_id=info:doi/10.1007/s10598-015-9307-9&rft_dat=%3Cproquest_cross%3E1879988577%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1889-de4e560f18c7e40467fb000b009d832ea07993fc29587c475d6a554dd19b738b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879988577&rft_id=info:pmid/&rfr_iscdi=true