Loading…

Quantum Networks with Chiral-Light-Matter Interaction in Waveguides

We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-lig...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2016-12, Vol.117 (24), p.240501-240501, Article 240501
Main Authors: Mahmoodian, Sahand, Lodahl, Peter, Sørensen, Anders S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F∼0.998 achievable in state-of-the-art quantum dot systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.117.240501