Loading…

Catalysis‐Driven Self‐Thermophoresis of Janus Plasmonic Nanomotors

It is highly demanding to design active nanomotors that can move in response to specific signals with controllable rate and direction. A catalysis‐driven nanomotor was constructed by designing catalytically and plasmonically active Janus gold nanoparticles (Au NPs), which generate an asymmetric temp...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2017-01, Vol.129 (2), p.530-533
Main Authors: Qin, Weiwei, Peng, Tianhuan, Gao, Yanjing, Wang, Fei, Hu, Xiaocai, Wang, Kun, Shi, Jiye, Li, Di, Ren, Jicun, Fan, Chunhai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is highly demanding to design active nanomotors that can move in response to specific signals with controllable rate and direction. A catalysis‐driven nanomotor was constructed by designing catalytically and plasmonically active Janus gold nanoparticles (Au NPs), which generate an asymmetric temperature gradient of local solvent surrounding NPs in catalytic reactions. The self‐thermophoresis behavior of the Janus nanomotor is monitored from its inherent plasmonic response. The diffusion coefficient of the self‐thermophoresis motion is linearly dependent on chemical reaction rate, as described by a stochastic model. Thermophorese liegt dem Bewegungsmechanimus eines auf einer chemischen Reaktion basierenden, selbstangetriebenen plasmonischen Janus‐Nanomotors zugrunde. Ein stochastisches Modell wurde entwickelt, um die Beziehung zwischen den Diffusionskoeffizienten der selbstthermophoretischen Bewegung und der Geschwindigkeit der chemischen Reaktion zu beschreiben.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201609121