Loading…
Catalysis‐Driven Self‐Thermophoresis of Janus Plasmonic Nanomotors
It is highly demanding to design active nanomotors that can move in response to specific signals with controllable rate and direction. A catalysis‐driven nanomotor was constructed by designing catalytically and plasmonically active Janus gold nanoparticles (Au NPs), which generate an asymmetric temp...
Saved in:
Published in: | Angewandte Chemie 2017-01, Vol.129 (2), p.530-533 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is highly demanding to design active nanomotors that can move in response to specific signals with controllable rate and direction. A catalysis‐driven nanomotor was constructed by designing catalytically and plasmonically active Janus gold nanoparticles (Au NPs), which generate an asymmetric temperature gradient of local solvent surrounding NPs in catalytic reactions. The self‐thermophoresis behavior of the Janus nanomotor is monitored from its inherent plasmonic response. The diffusion coefficient of the self‐thermophoresis motion is linearly dependent on chemical reaction rate, as described by a stochastic model.
Thermophorese liegt dem Bewegungsmechanimus eines auf einer chemischen Reaktion basierenden, selbstangetriebenen plasmonischen Janus‐Nanomotors zugrunde. Ein stochastisches Modell wurde entwickelt, um die Beziehung zwischen den Diffusionskoeffizienten der selbstthermophoretischen Bewegung und der Geschwindigkeit der chemischen Reaktion zu beschreiben. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.201609121 |