Loading…

Operator index reduction in electromagnetism

The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. T...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2017-05, Vol.316, p.298-306
Main Author: Niroomand Rad, Helia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573
container_end_page 306
container_issue
container_start_page 298
container_title Journal of computational and applied mathematics
container_volume 316
creator Niroomand Rad, Helia
description The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination.
doi_str_mv 10.1016/j.cam.2016.10.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879996915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716305222</els_id><sourcerecordid>1879996915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHddurA1adImxZUMvmBgNroOmeRWUtqmJqnovzelrl3dB-dc7vkQuia4IJjUd12h1VCUqU1zgSk9QRsieJMTzsUp2mDKeY5Zyc_RRQgdxrhuCNug28MEXkXnMzsa-M48mFlH68Y0Z9CDjt4N6mOEaMNwic5a1Qe4-qtb9P70-LZ7yfeH59fdwz7XtKxizgTQSjCD27quKRGGl0oZamjJgDWGUmiNYFRoAQ0oLdr6yFWbHmXlkUDF6RbdrHcn7z5nCFEONmjoezWCm4NcgjVNClAlKVml2rsQPLRy8nZQ_kcSLBcyspOJjFzILKtEJnnuVw-kDF8WvAzawqjBWJ8CS-PsP-5floBrDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879996915</pqid></control><display><type>article</type><title>Operator index reduction in electromagnetism</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Niroomand Rad, Helia</creator><creatorcontrib>Niroomand Rad, Helia</creatorcontrib><description>The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.10.033</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Differentiation index ; Discretization ; Electromagnetism ; Galerkin method ; Galerkin methods ; Mathematical analysis ; Minimal extension technique ; Operator differential-algebraic equations ; Operators ; Operators (mathematics) ; Partial differential equations ; Reduction</subject><ispartof>Journal of computational and applied mathematics, 2017-05, Vol.316, p.298-306</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Niroomand Rad, Helia</creatorcontrib><title>Operator index reduction in electromagnetism</title><title>Journal of computational and applied mathematics</title><description>The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination.</description><subject>Differentiation index</subject><subject>Discretization</subject><subject>Electromagnetism</subject><subject>Galerkin method</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Minimal extension technique</subject><subject>Operator differential-algebraic equations</subject><subject>Operators</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Reduction</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHddurA1adImxZUMvmBgNroOmeRWUtqmJqnovzelrl3dB-dc7vkQuia4IJjUd12h1VCUqU1zgSk9QRsieJMTzsUp2mDKeY5Zyc_RRQgdxrhuCNug28MEXkXnMzsa-M48mFlH68Y0Z9CDjt4N6mOEaMNwic5a1Qe4-qtb9P70-LZ7yfeH59fdwz7XtKxizgTQSjCD27quKRGGl0oZamjJgDWGUmiNYFRoAQ0oLdr6yFWbHmXlkUDF6RbdrHcn7z5nCFEONmjoezWCm4NcgjVNClAlKVml2rsQPLRy8nZQ_kcSLBcyspOJjFzILKtEJnnuVw-kDF8WvAzawqjBWJ8CS-PsP-5floBrDQ</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Niroomand Rad, Helia</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170515</creationdate><title>Operator index reduction in electromagnetism</title><author>Niroomand Rad, Helia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differentiation index</topic><topic>Discretization</topic><topic>Electromagnetism</topic><topic>Galerkin method</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Minimal extension technique</topic><topic>Operator differential-algebraic equations</topic><topic>Operators</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niroomand Rad, Helia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niroomand Rad, Helia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator index reduction in electromagnetism</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-05-15</date><risdate>2017</risdate><volume>316</volume><spage>298</spage><epage>306</epage><pages>298-306</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.10.033</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2017-05, Vol.316, p.298-306
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1879996915
source ScienceDirect Freedom Collection 2022-2024
subjects Differentiation index
Discretization
Electromagnetism
Galerkin method
Galerkin methods
Mathematical analysis
Minimal extension technique
Operator differential-algebraic equations
Operators
Operators (mathematics)
Partial differential equations
Reduction
title Operator index reduction in electromagnetism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator%20index%20reduction%20in%20electromagnetism&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Niroomand%20Rad,%20Helia&rft.date=2017-05-15&rft.volume=316&rft.spage=298&rft.epage=306&rft.pages=298-306&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.10.033&rft_dat=%3Cproquest_cross%3E1879996915%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879996915&rft_id=info:pmid/&rfr_iscdi=true