Loading…
Operator index reduction in electromagnetism
The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. T...
Saved in:
Published in: | Journal of computational and applied mathematics 2017-05, Vol.316, p.298-306 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573 |
container_end_page | 306 |
container_issue | |
container_start_page | 298 |
container_title | Journal of computational and applied mathematics |
container_volume | 316 |
creator | Niroomand Rad, Helia |
description | The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination. |
doi_str_mv | 10.1016/j.cam.2016.10.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879996915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716305222</els_id><sourcerecordid>1879996915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHddurA1adImxZUMvmBgNroOmeRWUtqmJqnovzelrl3dB-dc7vkQuia4IJjUd12h1VCUqU1zgSk9QRsieJMTzsUp2mDKeY5Zyc_RRQgdxrhuCNug28MEXkXnMzsa-M48mFlH68Y0Z9CDjt4N6mOEaMNwic5a1Qe4-qtb9P70-LZ7yfeH59fdwz7XtKxizgTQSjCD27quKRGGl0oZamjJgDWGUmiNYFRoAQ0oLdr6yFWbHmXlkUDF6RbdrHcn7z5nCFEONmjoezWCm4NcgjVNClAlKVml2rsQPLRy8nZQ_kcSLBcyspOJjFzILKtEJnnuVw-kDF8WvAzawqjBWJ8CS-PsP-5floBrDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879996915</pqid></control><display><type>article</type><title>Operator index reduction in electromagnetism</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Niroomand Rad, Helia</creator><creatorcontrib>Niroomand Rad, Helia</creatorcontrib><description>The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.10.033</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Differentiation index ; Discretization ; Electromagnetism ; Galerkin method ; Galerkin methods ; Mathematical analysis ; Minimal extension technique ; Operator differential-algebraic equations ; Operators ; Operators (mathematics) ; Partial differential equations ; Reduction</subject><ispartof>Journal of computational and applied mathematics, 2017-05, Vol.316, p.298-306</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Niroomand Rad, Helia</creatorcontrib><title>Operator index reduction in electromagnetism</title><title>Journal of computational and applied mathematics</title><description>The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination.</description><subject>Differentiation index</subject><subject>Discretization</subject><subject>Electromagnetism</subject><subject>Galerkin method</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Minimal extension technique</subject><subject>Operator differential-algebraic equations</subject><subject>Operators</subject><subject>Operators (mathematics)</subject><subject>Partial differential equations</subject><subject>Reduction</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHddurA1adImxZUMvmBgNroOmeRWUtqmJqnovzelrl3dB-dc7vkQuia4IJjUd12h1VCUqU1zgSk9QRsieJMTzsUp2mDKeY5Zyc_RRQgdxrhuCNug28MEXkXnMzsa-M48mFlH68Y0Z9CDjt4N6mOEaMNwic5a1Qe4-qtb9P70-LZ7yfeH59fdwz7XtKxizgTQSjCD27quKRGGl0oZamjJgDWGUmiNYFRoAQ0oLdr6yFWbHmXlkUDF6RbdrHcn7z5nCFEONmjoezWCm4NcgjVNClAlKVml2rsQPLRy8nZQ_kcSLBcyspOJjFzILKtEJnnuVw-kDF8WvAzawqjBWJ8CS-PsP-5floBrDQ</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Niroomand Rad, Helia</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170515</creationdate><title>Operator index reduction in electromagnetism</title><author>Niroomand Rad, Helia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Differentiation index</topic><topic>Discretization</topic><topic>Electromagnetism</topic><topic>Galerkin method</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Minimal extension technique</topic><topic>Operator differential-algebraic equations</topic><topic>Operators</topic><topic>Operators (mathematics)</topic><topic>Partial differential equations</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niroomand Rad, Helia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niroomand Rad, Helia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator index reduction in electromagnetism</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-05-15</date><risdate>2017</risdate><volume>316</volume><spage>298</spage><epage>306</epage><pages>298-306</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>The aim of this work is introducing an index reduction technique in the operator level, thereby regularization of the high index differential-algebraic equations (DAEs) which are derived by spatial semi-discretization of the partial differential equations (PDEs) in electromagnetism can be avoided. The introduced technique is applied to the obtained operator DAE system which is resulted by considering the PDE system in the weak sense for the suitable Hilbert spaces. In addition, for the discretization, the Galerkin method is applied which in turn provides automatically nice properties of the discrete operators for the index determination.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.10.033</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2017-05, Vol.316, p.298-306 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1879996915 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Differentiation index Discretization Electromagnetism Galerkin method Galerkin methods Mathematical analysis Minimal extension technique Operator differential-algebraic equations Operators Operators (mathematics) Partial differential equations Reduction |
title | Operator index reduction in electromagnetism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator%20index%20reduction%20in%20electromagnetism&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Niroomand%20Rad,%20Helia&rft.date=2017-05-15&rft.volume=316&rft.spage=298&rft.epage=306&rft.pages=298-306&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.10.033&rft_dat=%3Cproquest_cross%3E1879996915%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-48e3584d0f666318d72aad3d324e49d33efd8438c8e9eac8f6b7af17742b1e573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879996915&rft_id=info:pmid/&rfr_iscdi=true |