Loading…
Performance enhanced image steganography systems using transforms and optimization techniques
Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applicatio...
Saved in:
Published in: | Multimedia tools and applications 2017, Vol.76 (1), p.415-436 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Image steganography is the art of hiding highly sensitive information onto the cover image. An ideal approach to image steganography must satisfy two factors: high quality of stego image and high embedding capacity. Conventionally, transform based techniques are widely preferred for these applications. The commonly used transforms for steganography applications are Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) etc. In this work, frequency domain transforms such as Fresnelet Transform (FT) and Contourlet Transform (CT) are used for the data hiding process. The secret data is normally hidden in the coefficients of these transforms. However, data hiding in transform coefficients yield less accurate results since the coefficients used for data hiding are selected randomly. Hence, in this work, optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used for improving the performance of the steganography system. GA and PSO are used to find the best coefficients in order to hide the Quick Response (QR) coded secret data. This approach yields an average PSNR of 52.56 dB and an embedding capacity of 902,136 bits. These experimental results validate the practical feasibility of the proposed methodology for security applications. |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-015-3035-1 |