Loading…
Temperature-induced spectrum response of volume grating as an effective strategy for holographic sensing in acrylamide polymer part I: sensing
Temperature-induced diffraction spectrum responses of holographic gratings are characterized for exploring the temperature-sensing capability of a holographic sensor. Linear blue shift of peak wavelength and linear diffraction reduction are observed. It provides quantitative expressions for sensing...
Saved in:
Published in: | Applied optics (2004) 2016-12, Vol.55 (35), p.9907-9916 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Temperature-induced diffraction spectrum responses of holographic gratings are characterized for exploring the temperature-sensing capability of a holographic sensor. Linear blue shift of peak wavelength and linear diffraction reduction are observed. It provides quantitative expressions for sensing applications. Inorganic nanoparticles are dispersed into the binder to improve sensing properties. Obvious improvement of sensing parameters, including wavelength shift and diffraction change, is confirmed. The sensitivity, response rate, and linear response region of holographic sensors are determined to evaluate sensing capacity. Influence of relative humidity on holographic sensing response is discussed. Expansion of humidity range provides a probability for extending the range of wavelength shift. Finally, the temperature response reversibility of a holographic sensor is evaluated. These experimental results can expand the practical application field of holographic sensing strategy and accelerate the development of holographic sensors. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.55.009907 |