Loading…

Optical Waveguide Solar Power System for Material Processing in Space

AbstractThe conventional concept for solar energy utilization in space is converting solar radiation to electricity and then using the electric power for various applications. For some applications, however, it is more efficient to utilize solar energy directly. Oxygen production from lunar regolith...

Full description

Saved in:
Bibliographic Details
Published in:Journal of aerospace engineering 2015-01, Vol.28 (1)
Main Authors: Nakamura, Takashi, Smith, Benjamin K, Irvin, Benjamin R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a412t-862823c094fd59bbc21f7fc7c2a4afedf26e15d11281902351f517146391ab1b3
cites cdi_FETCH-LOGICAL-a412t-862823c094fd59bbc21f7fc7c2a4afedf26e15d11281902351f517146391ab1b3
container_end_page
container_issue 1
container_start_page
container_title Journal of aerospace engineering
container_volume 28
creator Nakamura, Takashi
Smith, Benjamin K
Irvin, Benjamin R
description AbstractThe conventional concept for solar energy utilization in space is converting solar radiation to electricity and then using the electric power for various applications. For some applications, however, it is more efficient to utilize solar energy directly. Oxygen production from lunar regolith, for example, can be accomplished by using solar thermal power directly for thermochemical reduction of lunar oxides. Space-based plant growth can use photosynthetically active radiation (PAR) from solar spectra for biomass production and life support. The authors and their colleagues have been developing a new solar power system called the optical waveguide (OW) system for solar power utilization in space. In this system, solar radiation is collected by the concentrator array, which transfers the concentrated solar radiation to the OW transmission line made of low loss optical fibers. The OW transmission line directs the solar radiation to the site of solar power utilization. This paper discusses the technical background of the OW system and reviews development and testing of the engineering prototype of the OW solar thermal system during the National Aeronautics and Space Administration (NASA) in situ resource utilization (ISRU) analog test in 2010. Based on the results, performance and viability of the OW system in application to space solar power utilization are discussed.
doi_str_mv 10.1061/(ASCE)AS.1943-5525.0000294
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1879999222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879999222</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-862823c094fd59bbc21f7fc7c2a4afedf26e15d11281902351f517146391ab1b3</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRUVpoWnafxBdpQu7Gvmp7kJIH5CSgFu6FLIsBQfHciW7JX9fmYTsOosZGO69zByE7oGEQFJ4nM2LxfJhXoTA4ihIEpqExBdl8QWanHeXaEJyFgUQUbhGN87tCIE4ZXSCluuur6Vo8Jf4UduhrhQuTCMs3phfZXFxcL3aY20sfhe9srVXbqyRyrm63eK6xUUnpLpFV1o0Tt2d5hR9Pi8_Fq_Bav3ytpivAhED7YM8pTmNJGGxrhJWlpKCzrTMJBWx0KrSNFWQVAA0B0ZolIBOIPOXRgxECWU0RbNjbmfN96Bcz_e1k6ppRKvM4DjkGfNFKfXSp6NUWuOcVZp3tt4Le-BA-MiO85Gdb3zkxEdO_MTOm9OjWfh0vjODbf1bZ-f_xj-RXXIG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879999222</pqid></control><display><type>article</type><title>Optical Waveguide Solar Power System for Material Processing in Space</title><source>ASCE Journals</source><creator>Nakamura, Takashi ; Smith, Benjamin K ; Irvin, Benjamin R</creator><creatorcontrib>Nakamura, Takashi ; Smith, Benjamin K ; Irvin, Benjamin R</creatorcontrib><description>AbstractThe conventional concept for solar energy utilization in space is converting solar radiation to electricity and then using the electric power for various applications. For some applications, however, it is more efficient to utilize solar energy directly. Oxygen production from lunar regolith, for example, can be accomplished by using solar thermal power directly for thermochemical reduction of lunar oxides. Space-based plant growth can use photosynthetically active radiation (PAR) from solar spectra for biomass production and life support. The authors and their colleagues have been developing a new solar power system called the optical waveguide (OW) system for solar power utilization in space. In this system, solar radiation is collected by the concentrator array, which transfers the concentrated solar radiation to the OW transmission line made of low loss optical fibers. The OW transmission line directs the solar radiation to the site of solar power utilization. This paper discusses the technical background of the OW system and reviews development and testing of the engineering prototype of the OW solar thermal system during the National Aeronautics and Space Administration (NASA) in situ resource utilization (ISRU) analog test in 2010. Based on the results, performance and viability of the OW system in application to space solar power utilization are discussed.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0000294</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>In situ resources utilization ; Optical waveguides ; Solar energy ; Solar heating ; Solar power generation ; Solar radiation ; Technical Papers ; Transmission lines ; Utilization</subject><ispartof>Journal of aerospace engineering, 2015-01, Vol.28 (1)</ispartof><rights>2014 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-862823c094fd59bbc21f7fc7c2a4afedf26e15d11281902351f517146391ab1b3</citedby><cites>FETCH-LOGICAL-a412t-862823c094fd59bbc21f7fc7c2a4afedf26e15d11281902351f517146391ab1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0000294$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000294$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76191,76199</link.rule.ids></links><search><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Smith, Benjamin K</creatorcontrib><creatorcontrib>Irvin, Benjamin R</creatorcontrib><title>Optical Waveguide Solar Power System for Material Processing in Space</title><title>Journal of aerospace engineering</title><description>AbstractThe conventional concept for solar energy utilization in space is converting solar radiation to electricity and then using the electric power for various applications. For some applications, however, it is more efficient to utilize solar energy directly. Oxygen production from lunar regolith, for example, can be accomplished by using solar thermal power directly for thermochemical reduction of lunar oxides. Space-based plant growth can use photosynthetically active radiation (PAR) from solar spectra for biomass production and life support. The authors and their colleagues have been developing a new solar power system called the optical waveguide (OW) system for solar power utilization in space. In this system, solar radiation is collected by the concentrator array, which transfers the concentrated solar radiation to the OW transmission line made of low loss optical fibers. The OW transmission line directs the solar radiation to the site of solar power utilization. This paper discusses the technical background of the OW system and reviews development and testing of the engineering prototype of the OW solar thermal system during the National Aeronautics and Space Administration (NASA) in situ resource utilization (ISRU) analog test in 2010. Based on the results, performance and viability of the OW system in application to space solar power utilization are discussed.</description><subject>In situ resources utilization</subject><subject>Optical waveguides</subject><subject>Solar energy</subject><subject>Solar heating</subject><subject>Solar power generation</subject><subject>Solar radiation</subject><subject>Technical Papers</subject><subject>Transmission lines</subject><subject>Utilization</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMtqwzAQRUVpoWnafxBdpQu7Gvmp7kJIH5CSgFu6FLIsBQfHciW7JX9fmYTsOosZGO69zByE7oGEQFJ4nM2LxfJhXoTA4ihIEpqExBdl8QWanHeXaEJyFgUQUbhGN87tCIE4ZXSCluuur6Vo8Jf4UduhrhQuTCMs3phfZXFxcL3aY20sfhe9srVXbqyRyrm63eK6xUUnpLpFV1o0Tt2d5hR9Pi8_Fq_Bav3ytpivAhED7YM8pTmNJGGxrhJWlpKCzrTMJBWx0KrSNFWQVAA0B0ZolIBOIPOXRgxECWU0RbNjbmfN96Bcz_e1k6ppRKvM4DjkGfNFKfXSp6NUWuOcVZp3tt4Le-BA-MiO85Gdb3zkxEdO_MTOm9OjWfh0vjODbf1bZ-f_xj-RXXIG</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Nakamura, Takashi</creator><creator>Smith, Benjamin K</creator><creator>Irvin, Benjamin R</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Optical Waveguide Solar Power System for Material Processing in Space</title><author>Nakamura, Takashi ; Smith, Benjamin K ; Irvin, Benjamin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-862823c094fd59bbc21f7fc7c2a4afedf26e15d11281902351f517146391ab1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>In situ resources utilization</topic><topic>Optical waveguides</topic><topic>Solar energy</topic><topic>Solar heating</topic><topic>Solar power generation</topic><topic>Solar radiation</topic><topic>Technical Papers</topic><topic>Transmission lines</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Smith, Benjamin K</creatorcontrib><creatorcontrib>Irvin, Benjamin R</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Takashi</au><au>Smith, Benjamin K</au><au>Irvin, Benjamin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Waveguide Solar Power System for Material Processing in Space</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>28</volume><issue>1</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractThe conventional concept for solar energy utilization in space is converting solar radiation to electricity and then using the electric power for various applications. For some applications, however, it is more efficient to utilize solar energy directly. Oxygen production from lunar regolith, for example, can be accomplished by using solar thermal power directly for thermochemical reduction of lunar oxides. Space-based plant growth can use photosynthetically active radiation (PAR) from solar spectra for biomass production and life support. The authors and their colleagues have been developing a new solar power system called the optical waveguide (OW) system for solar power utilization in space. In this system, solar radiation is collected by the concentrator array, which transfers the concentrated solar radiation to the OW transmission line made of low loss optical fibers. The OW transmission line directs the solar radiation to the site of solar power utilization. This paper discusses the technical background of the OW system and reviews development and testing of the engineering prototype of the OW solar thermal system during the National Aeronautics and Space Administration (NASA) in situ resource utilization (ISRU) analog test in 2010. Based on the results, performance and viability of the OW system in application to space solar power utilization are discussed.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0000294</doi></addata></record>
fulltext fulltext
identifier ISSN: 0893-1321
ispartof Journal of aerospace engineering, 2015-01, Vol.28 (1)
issn 0893-1321
1943-5525
language eng
recordid cdi_proquest_miscellaneous_1879999222
source ASCE Journals
subjects In situ resources utilization
Optical waveguides
Solar energy
Solar heating
Solar power generation
Solar radiation
Technical Papers
Transmission lines
Utilization
title Optical Waveguide Solar Power System for Material Processing in Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Waveguide%20Solar%20Power%20System%20for%20Material%20Processing%20in%20Space&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Nakamura,%20Takashi&rft.date=2015-01-01&rft.volume=28&rft.issue=1&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0000294&rft_dat=%3Cproquest_cross%3E1879999222%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a412t-862823c094fd59bbc21f7fc7c2a4afedf26e15d11281902351f517146391ab1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1879999222&rft_id=info:pmid/&rfr_iscdi=true