Loading…

Spectrally encoded common-path fiber-optic-based parallel optical coherence tomography

We demonstrate a fiber-optic-based parallel optical coherence tomography (OCT) using spectrally encoded extended illumination with a common-path handheld probe, where the flexibility and robustness of the system are significantly improved, which is critical in the clinical environment. To the best o...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2016-09, Vol.41 (18), p.4241-4244
Main Authors: Lee, Kye-Sung, Hur, Hwan, Sung, Ha-Young, Kim, I Jong, Kim, Geon-Hee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate a fiber-optic-based parallel optical coherence tomography (OCT) using spectrally encoded extended illumination with a common-path handheld probe, where the flexibility and robustness of the system are significantly improved, which is critical in the clinical environment. To the best of our knowledge, we present the first parallel OCT based on fiber optics including a fiber coupler with a sensitivity of 94 dB, which is comparable to that of point-scanning OCT. We also investigated the effect of the phase stability of the fiber-based interferometry on the parallel OCT system by comparing the common-path OCT with two-arm OCT. Using the homemade common-path handheld probe based on a Mirau interferometer, the phase stability was 32 times better than that of the two-arm OCT. The axial resolution of the common-path OCT was measured as 5.1±0.3  μm. To demonstrate the in vivo imaging performance of the fiber-optic-based parallel OCT, human skin was imaged.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.41.004241