Loading…
Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles
A model is proposed for the formation of metallic phase when gaseous reducing agent is bubbled through multicomponent oxide melt. The model includes the following stages: the formation of bubbles when gas is injected in the melt; the reduction of metal at the surface of the bubbles and its concentra...
Saved in:
Published in: | Steel in translation 2016-09, Vol.46 (9), p.629-632 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301X-30ccc2ccf2e9d96e9f2836122641c38b7acc75dea15f8e73e2937f9989f249cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c301X-30ccc2ccf2e9d96e9f2836122641c38b7acc75dea15f8e73e2937f9989f249cb3 |
container_end_page | 632 |
container_issue | 9 |
container_start_page | 629 |
container_title | Steel in translation |
container_volume | 46 |
creator | Vusikhis, A. S. Leont’ev, L. I. Chentsov, V. P. Kudinov, D. Z. Selivanov, E. N. |
description | A model is proposed for the formation of metallic phase when gaseous reducing agent is bubbled through multicomponent oxide melt. The model includes the following stages: the formation of bubbles when gas is injected in the melt; the reduction of metal at the surface of the bubbles and its concentration in droplet form at the rear of the bubble; motion of the bubble–droplet system in a direction determined by the ratio of the uplift forces on the bubble and the gravitational forces on the droplet; entrainment of the droplets to the surface; and coalescence of the droplets and their descent on reaching a size such that the gravitational forces exceed the sum of the hydrostatic collision forces and the surface tension forces. Equations are presented for estimating the size of the gas bubble and the droplet moving in oxide melt without decrease in size; the direction of motion of the bubble–droplet system; its rate of ascent or descent; and the conditions in which the bubble–droplet system breaks down. The factors responsible for separation of the bubble and the droplet are identified: the surface properties of the oxide melt and the metallic melts and their interphase characteristics. By adjusting these parameters, the formation of metallic phase at the bottom of the vessel may be regulated. |
doi_str_mv | 10.3103/S096709121609014X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880011380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4293186171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301X-30ccc2ccf2e9d96e9f2836122641c38b7acc75dea15f8e73e2937f9989f249cb3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouH78AG8BL166ZpJtmxxFXBUWFFTwVrLptFtJm5q04J7866asB1E8DTPzvC_zQcgZsLkAJi6fmMpypoBDxhSDxesemYESacKUlPtkNrWTqX9IjkJ4YyzNeAoz8rl0vtVD4zrqKtrioK1tDO03OiBdb2mvQ2i6mtYxd2OgHsvRTAVdYzfQYePdWG9oO9qhMa7tXTeV3UdTYnSzw5w-aj9QmNPnDTqPkdKW9r7pTNNbDCfkoNI24Ol3PCYvy5vn67tk9XB7f321Soxg8JoIZozhxlQcVakyVBWXIgPOswUYIde5NiZPS9SQVhJzgVyJvFJKRnChzFock4udb-_d-4hhKNomGLRWd9NeBUjJGICQLKLnv9A3N_ouThepNOW5ZLmKFOwo410IHqsiLtVqvy2AFdNLij8viRq-04TpADX6H87_ir4AekKPRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855278079</pqid></control><display><type>article</type><title>Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles</title><source>Springer Link</source><creator>Vusikhis, A. S. ; Leont’ev, L. I. ; Chentsov, V. P. ; Kudinov, D. Z. ; Selivanov, E. N.</creator><creatorcontrib>Vusikhis, A. S. ; Leont’ev, L. I. ; Chentsov, V. P. ; Kudinov, D. Z. ; Selivanov, E. N.</creatorcontrib><description>A model is proposed for the formation of metallic phase when gaseous reducing agent is bubbled through multicomponent oxide melt. The model includes the following stages: the formation of bubbles when gas is injected in the melt; the reduction of metal at the surface of the bubbles and its concentration in droplet form at the rear of the bubble; motion of the bubble–droplet system in a direction determined by the ratio of the uplift forces on the bubble and the gravitational forces on the droplet; entrainment of the droplets to the surface; and coalescence of the droplets and their descent on reaching a size such that the gravitational forces exceed the sum of the hydrostatic collision forces and the surface tension forces. Equations are presented for estimating the size of the gas bubble and the droplet moving in oxide melt without decrease in size; the direction of motion of the bubble–droplet system; its rate of ascent or descent; and the conditions in which the bubble–droplet system breaks down. The factors responsible for separation of the bubble and the droplet are identified: the surface properties of the oxide melt and the metallic melts and their interphase characteristics. By adjusting these parameters, the formation of metallic phase at the bottom of the vessel may be regulated.</description><identifier>ISSN: 0967-0912</identifier><identifier>EISSN: 1935-0988</identifier><identifier>DOI: 10.3103/S096709121609014X</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Alloys ; Bubbles ; Carbon monoxide ; Chemistry and Materials Science ; Descent ; Droplets ; Electrons ; Entrainment ; Formations ; Gravitation ; Liquid metals ; Materials Science ; Mathematical models ; Melts ; Metallurgy ; Nickel ; Oxides ; Parameter identification ; Reducing agents ; Surface properties ; Surface tension ; Viscosity</subject><ispartof>Steel in translation, 2016-09, Vol.46 (9), p.629-632</ispartof><rights>Allerton Press, Inc. 2016</rights><rights>Steel in Translation is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301X-30ccc2ccf2e9d96e9f2836122641c38b7acc75dea15f8e73e2937f9989f249cb3</citedby><cites>FETCH-LOGICAL-c301X-30ccc2ccf2e9d96e9f2836122641c38b7acc75dea15f8e73e2937f9989f249cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vusikhis, A. S.</creatorcontrib><creatorcontrib>Leont’ev, L. I.</creatorcontrib><creatorcontrib>Chentsov, V. P.</creatorcontrib><creatorcontrib>Kudinov, D. Z.</creatorcontrib><creatorcontrib>Selivanov, E. N.</creatorcontrib><title>Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles</title><title>Steel in translation</title><addtitle>Steel Transl</addtitle><description>A model is proposed for the formation of metallic phase when gaseous reducing agent is bubbled through multicomponent oxide melt. The model includes the following stages: the formation of bubbles when gas is injected in the melt; the reduction of metal at the surface of the bubbles and its concentration in droplet form at the rear of the bubble; motion of the bubble–droplet system in a direction determined by the ratio of the uplift forces on the bubble and the gravitational forces on the droplet; entrainment of the droplets to the surface; and coalescence of the droplets and their descent on reaching a size such that the gravitational forces exceed the sum of the hydrostatic collision forces and the surface tension forces. Equations are presented for estimating the size of the gas bubble and the droplet moving in oxide melt without decrease in size; the direction of motion of the bubble–droplet system; its rate of ascent or descent; and the conditions in which the bubble–droplet system breaks down. The factors responsible for separation of the bubble and the droplet are identified: the surface properties of the oxide melt and the metallic melts and their interphase characteristics. By adjusting these parameters, the formation of metallic phase at the bottom of the vessel may be regulated.</description><subject>Alloys</subject><subject>Bubbles</subject><subject>Carbon monoxide</subject><subject>Chemistry and Materials Science</subject><subject>Descent</subject><subject>Droplets</subject><subject>Electrons</subject><subject>Entrainment</subject><subject>Formations</subject><subject>Gravitation</subject><subject>Liquid metals</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Melts</subject><subject>Metallurgy</subject><subject>Nickel</subject><subject>Oxides</subject><subject>Parameter identification</subject><subject>Reducing agents</subject><subject>Surface properties</subject><subject>Surface tension</subject><subject>Viscosity</subject><issn>0967-0912</issn><issn>1935-0988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoMouH78AG8BL166ZpJtmxxFXBUWFFTwVrLptFtJm5q04J7866asB1E8DTPzvC_zQcgZsLkAJi6fmMpypoBDxhSDxesemYESacKUlPtkNrWTqX9IjkJ4YyzNeAoz8rl0vtVD4zrqKtrioK1tDO03OiBdb2mvQ2i6mtYxd2OgHsvRTAVdYzfQYePdWG9oO9qhMa7tXTeV3UdTYnSzw5w-aj9QmNPnDTqPkdKW9r7pTNNbDCfkoNI24Ol3PCYvy5vn67tk9XB7f321Soxg8JoIZozhxlQcVakyVBWXIgPOswUYIde5NiZPS9SQVhJzgVyJvFJKRnChzFock4udb-_d-4hhKNomGLRWd9NeBUjJGICQLKLnv9A3N_ouThepNOW5ZLmKFOwo410IHqsiLtVqvy2AFdNLij8viRq-04TpADX6H87_ir4AekKPRQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Vusikhis, A. S.</creator><creator>Leont’ev, L. I.</creator><creator>Chentsov, V. P.</creator><creator>Kudinov, D. Z.</creator><creator>Selivanov, E. N.</creator><general>Allerton Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160901</creationdate><title>Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles</title><author>Vusikhis, A. S. ; Leont’ev, L. I. ; Chentsov, V. P. ; Kudinov, D. Z. ; Selivanov, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301X-30ccc2ccf2e9d96e9f2836122641c38b7acc75dea15f8e73e2937f9989f249cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Bubbles</topic><topic>Carbon monoxide</topic><topic>Chemistry and Materials Science</topic><topic>Descent</topic><topic>Droplets</topic><topic>Electrons</topic><topic>Entrainment</topic><topic>Formations</topic><topic>Gravitation</topic><topic>Liquid metals</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Melts</topic><topic>Metallurgy</topic><topic>Nickel</topic><topic>Oxides</topic><topic>Parameter identification</topic><topic>Reducing agents</topic><topic>Surface properties</topic><topic>Surface tension</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vusikhis, A. S.</creatorcontrib><creatorcontrib>Leont’ev, L. I.</creatorcontrib><creatorcontrib>Chentsov, V. P.</creatorcontrib><creatorcontrib>Kudinov, D. Z.</creatorcontrib><creatorcontrib>Selivanov, E. N.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Steel in translation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vusikhis, A. S.</au><au>Leont’ev, L. I.</au><au>Chentsov, V. P.</au><au>Kudinov, D. Z.</au><au>Selivanov, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles</atitle><jtitle>Steel in translation</jtitle><stitle>Steel Transl</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>46</volume><issue>9</issue><spage>629</spage><epage>632</epage><pages>629-632</pages><issn>0967-0912</issn><eissn>1935-0988</eissn><abstract>A model is proposed for the formation of metallic phase when gaseous reducing agent is bubbled through multicomponent oxide melt. The model includes the following stages: the formation of bubbles when gas is injected in the melt; the reduction of metal at the surface of the bubbles and its concentration in droplet form at the rear of the bubble; motion of the bubble–droplet system in a direction determined by the ratio of the uplift forces on the bubble and the gravitational forces on the droplet; entrainment of the droplets to the surface; and coalescence of the droplets and their descent on reaching a size such that the gravitational forces exceed the sum of the hydrostatic collision forces and the surface tension forces. Equations are presented for estimating the size of the gas bubble and the droplet moving in oxide melt without decrease in size; the direction of motion of the bubble–droplet system; its rate of ascent or descent; and the conditions in which the bubble–droplet system breaks down. The factors responsible for separation of the bubble and the droplet are identified: the surface properties of the oxide melt and the metallic melts and their interphase characteristics. By adjusting these parameters, the formation of metallic phase at the bottom of the vessel may be regulated.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S096709121609014X</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-0912 |
ispartof | Steel in translation, 2016-09, Vol.46 (9), p.629-632 |
issn | 0967-0912 1935-0988 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880011380 |
source | Springer Link |
subjects | Alloys Bubbles Carbon monoxide Chemistry and Materials Science Descent Droplets Electrons Entrainment Formations Gravitation Liquid metals Materials Science Mathematical models Melts Metallurgy Nickel Oxides Parameter identification Reducing agents Surface properties Surface tension Viscosity |
title | Formation of metallic phase by passing gaseous reducing agent through multicomponent oxide melt. Part 1. Theoretical principles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20metallic%20phase%20by%20passing%20gaseous%20reducing%20agent%20through%20multicomponent%20oxide%20melt.%20Part%201.%20Theoretical%20principles&rft.jtitle=Steel%20in%20translation&rft.au=Vusikhis,%20A.%20S.&rft.date=2016-09-01&rft.volume=46&rft.issue=9&rft.spage=629&rft.epage=632&rft.pages=629-632&rft.issn=0967-0912&rft.eissn=1935-0988&rft_id=info:doi/10.3103/S096709121609014X&rft_dat=%3Cproquest_cross%3E4293186171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301X-30ccc2ccf2e9d96e9f2836122641c38b7acc75dea15f8e73e2937f9989f249cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855278079&rft_id=info:pmid/&rfr_iscdi=true |