Loading…
Phase-Field-Crystal Model for Electromigration in Metal Interconnects
We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive...
Saved in:
Published in: | Physical review letters 2016-10, Vol.117 (15), p.155901-155901, Article 155901 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283 |
container_end_page | 155901 |
container_issue | 15 |
container_start_page | 155901 |
container_title | Physical review letters |
container_volume | 117 |
creator | Wang, Nan Bevan, Kirk H Provatas, Nikolas |
description | We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales. |
doi_str_mv | 10.1103/PhysRevLett.117.155901 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880012839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835519085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</originalsourceid><addsrcrecordid>eNqNkEFLw0AQhRdRbK3-hZKjl9SZbDa7OUppVWixSO9hs5nYSJqtu1uh_96UVvHoZQYe35vHPMbGCBNE4A-rzcG_0deCQugFOUEhcsALNkSQeSwR00s2BOAY5wBywG68_wAATDJ1zQaJlJniMhmy2WqjPcXzhtoqnrqDD7qNlraiNqqti2YtmeDstnl3OjS2i5ouWtKReekCOWO7rgf8Lbuqdevp7rxHbD2frafP8eL16WX6uIgNT9MQ67pPFSYVGWqtKZMSlDYoSkhL4KIsc5JaljpJBdWJgiyFvO6HLqWpEsVH7P50dufs5558KLaNN9S2uiO79wUqdXxR8fwfKBcCc1CiR7MTapz13lFd7Fyz1e5QIBTHsos_ZfeCLE5l98bxOWNfbqn6tf20y78B5Kh9Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835519085</pqid></control><display><type>article</type><title>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Wang, Nan ; Bevan, Kirk H ; Provatas, Nikolas</creator><creatorcontrib>Wang, Nan ; Bevan, Kirk H ; Provatas, Nikolas</creatorcontrib><description>We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.117.155901</identifier><identifier>PMID: 27768372</identifier><language>eng</language><publisher>United States</publisher><subject>Diffusion ; Electric fields ; Electromigration ; Failure ; Mathematical models ; Migration ; Time ; Voids</subject><ispartof>Physical review letters, 2016-10, Vol.117 (15), p.155901-155901, Article 155901</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</citedby><cites>FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27768372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Bevan, Kirk H</creatorcontrib><creatorcontrib>Provatas, Nikolas</creatorcontrib><title>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.</description><subject>Diffusion</subject><subject>Electric fields</subject><subject>Electromigration</subject><subject>Failure</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>Time</subject><subject>Voids</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLw0AQhRdRbK3-hZKjl9SZbDa7OUppVWixSO9hs5nYSJqtu1uh_96UVvHoZQYe35vHPMbGCBNE4A-rzcG_0deCQugFOUEhcsALNkSQeSwR00s2BOAY5wBywG68_wAATDJ1zQaJlJniMhmy2WqjPcXzhtoqnrqDD7qNlraiNqqti2YtmeDstnl3OjS2i5ouWtKReekCOWO7rgf8Lbuqdevp7rxHbD2frafP8eL16WX6uIgNT9MQ67pPFSYVGWqtKZMSlDYoSkhL4KIsc5JaljpJBdWJgiyFvO6HLqWpEsVH7P50dufs5558KLaNN9S2uiO79wUqdXxR8fwfKBcCc1CiR7MTapz13lFd7Fyz1e5QIBTHsos_ZfeCLE5l98bxOWNfbqn6tf20y78B5Kh9Og</recordid><startdate>20161007</startdate><enddate>20161007</enddate><creator>Wang, Nan</creator><creator>Bevan, Kirk H</creator><creator>Provatas, Nikolas</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161007</creationdate><title>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</title><author>Wang, Nan ; Bevan, Kirk H ; Provatas, Nikolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffusion</topic><topic>Electric fields</topic><topic>Electromigration</topic><topic>Failure</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>Time</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Bevan, Kirk H</creatorcontrib><creatorcontrib>Provatas, Nikolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Nan</au><au>Bevan, Kirk H</au><au>Provatas, Nikolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-10-07</date><risdate>2016</risdate><volume>117</volume><issue>15</issue><spage>155901</spage><epage>155901</epage><pages>155901-155901</pages><artnum>155901</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.</abstract><cop>United States</cop><pmid>27768372</pmid><doi>10.1103/PhysRevLett.117.155901</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2016-10, Vol.117 (15), p.155901-155901, Article 155901 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880012839 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Diffusion Electric fields Electromigration Failure Mathematical models Migration Time Voids |
title | Phase-Field-Crystal Model for Electromigration in Metal Interconnects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Field-Crystal%20Model%20for%20Electromigration%20in%20Metal%20Interconnects&rft.jtitle=Physical%20review%20letters&rft.au=Wang,%20Nan&rft.date=2016-10-07&rft.volume=117&rft.issue=15&rft.spage=155901&rft.epage=155901&rft.pages=155901-155901&rft.artnum=155901&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.117.155901&rft_dat=%3Cproquest_cross%3E1835519085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835519085&rft_id=info:pmid/27768372&rfr_iscdi=true |