Loading…

Phase-Field-Crystal Model for Electromigration in Metal Interconnects

We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2016-10, Vol.117 (15), p.155901-155901, Article 155901
Main Authors: Wang, Nan, Bevan, Kirk H, Provatas, Nikolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283
cites cdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283
container_end_page 155901
container_issue 15
container_start_page 155901
container_title Physical review letters
container_volume 117
creator Wang, Nan
Bevan, Kirk H
Provatas, Nikolas
description We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.
doi_str_mv 10.1103/PhysRevLett.117.155901
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880012839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835519085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</originalsourceid><addsrcrecordid>eNqNkEFLw0AQhRdRbK3-hZKjl9SZbDa7OUppVWixSO9hs5nYSJqtu1uh_96UVvHoZQYe35vHPMbGCBNE4A-rzcG_0deCQugFOUEhcsALNkSQeSwR00s2BOAY5wBywG68_wAATDJ1zQaJlJniMhmy2WqjPcXzhtoqnrqDD7qNlraiNqqti2YtmeDstnl3OjS2i5ouWtKReekCOWO7rgf8Lbuqdevp7rxHbD2frafP8eL16WX6uIgNT9MQ67pPFSYVGWqtKZMSlDYoSkhL4KIsc5JaljpJBdWJgiyFvO6HLqWpEsVH7P50dufs5558KLaNN9S2uiO79wUqdXxR8fwfKBcCc1CiR7MTapz13lFd7Fyz1e5QIBTHsos_ZfeCLE5l98bxOWNfbqn6tf20y78B5Kh9Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835519085</pqid></control><display><type>article</type><title>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Wang, Nan ; Bevan, Kirk H ; Provatas, Nikolas</creator><creatorcontrib>Wang, Nan ; Bevan, Kirk H ; Provatas, Nikolas</creatorcontrib><description>We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.117.155901</identifier><identifier>PMID: 27768372</identifier><language>eng</language><publisher>United States</publisher><subject>Diffusion ; Electric fields ; Electromigration ; Failure ; Mathematical models ; Migration ; Time ; Voids</subject><ispartof>Physical review letters, 2016-10, Vol.117 (15), p.155901-155901, Article 155901</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</citedby><cites>FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27768372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Bevan, Kirk H</creatorcontrib><creatorcontrib>Provatas, Nikolas</creatorcontrib><title>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.</description><subject>Diffusion</subject><subject>Electric fields</subject><subject>Electromigration</subject><subject>Failure</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>Time</subject><subject>Voids</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLw0AQhRdRbK3-hZKjl9SZbDa7OUppVWixSO9hs5nYSJqtu1uh_96UVvHoZQYe35vHPMbGCBNE4A-rzcG_0deCQugFOUEhcsALNkSQeSwR00s2BOAY5wBywG68_wAATDJ1zQaJlJniMhmy2WqjPcXzhtoqnrqDD7qNlraiNqqti2YtmeDstnl3OjS2i5ouWtKReekCOWO7rgf8Lbuqdevp7rxHbD2frafP8eL16WX6uIgNT9MQ67pPFSYVGWqtKZMSlDYoSkhL4KIsc5JaljpJBdWJgiyFvO6HLqWpEsVH7P50dufs5558KLaNN9S2uiO79wUqdXxR8fwfKBcCc1CiR7MTapz13lFd7Fyz1e5QIBTHsos_ZfeCLE5l98bxOWNfbqn6tf20y78B5Kh9Og</recordid><startdate>20161007</startdate><enddate>20161007</enddate><creator>Wang, Nan</creator><creator>Bevan, Kirk H</creator><creator>Provatas, Nikolas</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161007</creationdate><title>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</title><author>Wang, Nan ; Bevan, Kirk H ; Provatas, Nikolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffusion</topic><topic>Electric fields</topic><topic>Electromigration</topic><topic>Failure</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>Time</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Bevan, Kirk H</creatorcontrib><creatorcontrib>Provatas, Nikolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Nan</au><au>Bevan, Kirk H</au><au>Provatas, Nikolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Field-Crystal Model for Electromigration in Metal Interconnects</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-10-07</date><risdate>2016</risdate><volume>117</volume><issue>15</issue><spage>155901</spage><epage>155901</epage><pages>155901-155901</pages><artnum>155901</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.</abstract><cop>United States</cop><pmid>27768372</pmid><doi>10.1103/PhysRevLett.117.155901</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2016-10, Vol.117 (15), p.155901-155901, Article 155901
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1880012839
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Diffusion
Electric fields
Electromigration
Failure
Mathematical models
Migration
Time
Voids
title Phase-Field-Crystal Model for Electromigration in Metal Interconnects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Field-Crystal%20Model%20for%20Electromigration%20in%20Metal%20Interconnects&rft.jtitle=Physical%20review%20letters&rft.au=Wang,%20Nan&rft.date=2016-10-07&rft.volume=117&rft.issue=15&rft.spage=155901&rft.epage=155901&rft.pages=155901-155901&rft.artnum=155901&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.117.155901&rft_dat=%3Cproquest_cross%3E1835519085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-af6835c4561aaae67708ac15b04b035bb9e7a7ba245ef2806409f640ab7cd283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835519085&rft_id=info:pmid/27768372&rfr_iscdi=true