Loading…
Time-Frequency Analysis Based on Improved Variational Mode Decomposition and Teager Energy Operator for Rotor System Fault Diagnosis
A time-frequency analysis method based on improved variational mode decomposition and Teager energy operator (IVMD-TEO) is proposed for fault diagnosis of turbine rotor. Variational mode decomposition (VMD) can decompose a multicomponent signal into a number of band-limited monocomponent signals and...
Saved in:
Published in: | Mathematical Problems in Engineering 2016-01, Vol.2016 (2016), p.1045-1053 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A time-frequency analysis method based on improved variational mode decomposition and Teager energy operator (IVMD-TEO) is proposed for fault diagnosis of turbine rotor. Variational mode decomposition (VMD) can decompose a multicomponent signal into a number of band-limited monocomponent signals and can effectively avoid model mixing. To determine the number of monocomponents adaptively, VMD is improved using the correlation coefficient criterion. Firstly, IVMD algorithm is used to decompose a multicomponent signal into a number of monocompositions adaptively. Second, all the monocomponent signals’ instantaneous amplitude and instantaneous frequency are demodulated via TEO, respectively, because TEO has fast and high precision demodulation advantages to monocomponent signal. Finally, the time-frequency representation of original signal is exhibited by superposing the time-frequency representations of all the monocomponents. The analysis results of simulation signal and experimental turbine rotor in rising speed condition demonstrate that the proposed method has perfect multicomponent signal decomposition capacity and good time-frequency expression. It is a promising time-frequency analysis method for rotor fault diagnosis. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2016/1713046 |