Loading…

Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations

Differences in the chemical potential of water and the resulting osmotic pressure across semipermeable membranes are of fundamental importance for many biological systems. Here, we calculate the osmotic pressure and the chemical potential of water for polysaccharide solutions by molecular simulation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2016-09, Vol.12 (9), p.4375-4384
Main Authors: Sauter, Jörg, Grafmüller, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a435t-e17355bb88ab40c47ef3b89503079e8f2f5c04cee1b08eb4063a25b6c67b25e3
cites cdi_FETCH-LOGICAL-a435t-e17355bb88ab40c47ef3b89503079e8f2f5c04cee1b08eb4063a25b6c67b25e3
container_end_page 4384
container_issue 9
container_start_page 4375
container_title Journal of chemical theory and computation
container_volume 12
creator Sauter, Jörg
Grafmüller, Andrea
description Differences in the chemical potential of water and the resulting osmotic pressure across semipermeable membranes are of fundamental importance for many biological systems. Here, we calculate the osmotic pressure and the chemical potential of water for polysaccharide solutions by molecular simulations. We set up a method to measure the osmotic pressure in polysaccharide systems at different concentrations and found that for monomers the experimental trend with respect to the solute concentration is reproduced correctly. However, the calculated osmotic pressure values are systematically too low, and two common carbohydrate force fields (FFs) cannot correctly describe the relationship between the osmotic pressure and the degree of polymerization. Therefore, we reparametrized parts of the GLYCAM06 TIP5P FF based on osmotic pressure data. The predictive power of the resulting GLYCAM06OSMOr14 TIP5P FF is demonstrated for two different sugar molecules over a wide range of concentrations, and additional evaluations for other solution properties show improved agreement with experimental data. Finally, we discuss different methods to obtain the chemical potential of water in solutions.
doi_str_mv 10.1021/acs.jctc.6b00295
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880015862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819430972</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-e17355bb88ab40c47ef3b89503079e8f2f5c04cee1b08eb4063a25b6c67b25e3</originalsourceid><addsrcrecordid>eNqNkTlPxDAUhC0EYmGhp0IuKcjiI06cEq24JBBI0Ee288IaknixnWL_Pd4DOiSqN9L7ZooZhM4omVHC6JUyYfZhopkVmhBWiT10REVeZVXBiv1fTeUEHYfwQQjnOeOHaMJKwSouiiP0-eKhsSba4R3HBeD5AnprVIdfXIQh2qTU0ODn0LtoDU50CKMH7NpEdKugjFkobxvAr64bo3VDwHqFn1wHZuyUx6-2T3fzOEEHreoCnO7uFL3d3rzN77PH57uH-fVjpnIuYga05EJoLaXSOTF5CS3XshKEk7IC2bJWGJIbAKqJhIQUXDGhC1OUmgngU3SxjV169zVCiHVvg4GuUwO4MdRUSkKokAX7B0qrnJOqXKNkixrvQvDQ1ktve-VXNSX1eow6jVGvx6h3YyTL-S591D00v4af9hNwuQU2Vjf6IdXyd943jpCW_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819430972</pqid></control><display><type>article</type><title>Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sauter, Jörg ; Grafmüller, Andrea</creator><creatorcontrib>Sauter, Jörg ; Grafmüller, Andrea</creatorcontrib><description>Differences in the chemical potential of water and the resulting osmotic pressure across semipermeable membranes are of fundamental importance for many biological systems. Here, we calculate the osmotic pressure and the chemical potential of water for polysaccharide solutions by molecular simulations. We set up a method to measure the osmotic pressure in polysaccharide systems at different concentrations and found that for monomers the experimental trend with respect to the solute concentration is reproduced correctly. However, the calculated osmotic pressure values are systematically too low, and two common carbohydrate force fields (FFs) cannot correctly describe the relationship between the osmotic pressure and the degree of polymerization. Therefore, we reparametrized parts of the GLYCAM06 TIP5P FF based on osmotic pressure data. The predictive power of the resulting GLYCAM06OSMOr14 TIP5P FF is demonstrated for two different sugar molecules over a wide range of concentrations, and additional evaluations for other solution properties show improved agreement with experimental data. Finally, we discuss different methods to obtain the chemical potential of water in solutions.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00295</identifier><identifier>PMID: 27529356</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical potential ; Computer simulation ; Mathematical analysis ; Mathematical models ; Monomers ; Osmotic pressure ; Polysaccharides ; Reproduction</subject><ispartof>Journal of chemical theory and computation, 2016-09, Vol.12 (9), p.4375-4384</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-e17355bb88ab40c47ef3b89503079e8f2f5c04cee1b08eb4063a25b6c67b25e3</citedby><cites>FETCH-LOGICAL-a435t-e17355bb88ab40c47ef3b89503079e8f2f5c04cee1b08eb4063a25b6c67b25e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27529356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sauter, Jörg</creatorcontrib><creatorcontrib>Grafmüller, Andrea</creatorcontrib><title>Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Differences in the chemical potential of water and the resulting osmotic pressure across semipermeable membranes are of fundamental importance for many biological systems. Here, we calculate the osmotic pressure and the chemical potential of water for polysaccharide solutions by molecular simulations. We set up a method to measure the osmotic pressure in polysaccharide systems at different concentrations and found that for monomers the experimental trend with respect to the solute concentration is reproduced correctly. However, the calculated osmotic pressure values are systematically too low, and two common carbohydrate force fields (FFs) cannot correctly describe the relationship between the osmotic pressure and the degree of polymerization. Therefore, we reparametrized parts of the GLYCAM06 TIP5P FF based on osmotic pressure data. The predictive power of the resulting GLYCAM06OSMOr14 TIP5P FF is demonstrated for two different sugar molecules over a wide range of concentrations, and additional evaluations for other solution properties show improved agreement with experimental data. Finally, we discuss different methods to obtain the chemical potential of water in solutions.</description><subject>Chemical potential</subject><subject>Computer simulation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monomers</subject><subject>Osmotic pressure</subject><subject>Polysaccharides</subject><subject>Reproduction</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkTlPxDAUhC0EYmGhp0IuKcjiI06cEq24JBBI0Ee288IaknixnWL_Pd4DOiSqN9L7ZooZhM4omVHC6JUyYfZhopkVmhBWiT10REVeZVXBiv1fTeUEHYfwQQjnOeOHaMJKwSouiiP0-eKhsSba4R3HBeD5AnprVIdfXIQh2qTU0ODn0LtoDU50CKMH7NpEdKugjFkobxvAr64bo3VDwHqFn1wHZuyUx6-2T3fzOEEHreoCnO7uFL3d3rzN77PH57uH-fVjpnIuYga05EJoLaXSOTF5CS3XshKEk7IC2bJWGJIbAKqJhIQUXDGhC1OUmgngU3SxjV169zVCiHVvg4GuUwO4MdRUSkKokAX7B0qrnJOqXKNkixrvQvDQ1ktve-VXNSX1eow6jVGvx6h3YyTL-S591D00v4af9hNwuQU2Vjf6IdXyd943jpCW_A</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Sauter, Jörg</creator><creator>Grafmüller, Andrea</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160913</creationdate><title>Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations</title><author>Sauter, Jörg ; Grafmüller, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-e17355bb88ab40c47ef3b89503079e8f2f5c04cee1b08eb4063a25b6c67b25e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical potential</topic><topic>Computer simulation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monomers</topic><topic>Osmotic pressure</topic><topic>Polysaccharides</topic><topic>Reproduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sauter, Jörg</creatorcontrib><creatorcontrib>Grafmüller, Andrea</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sauter, Jörg</au><au>Grafmüller, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>12</volume><issue>9</issue><spage>4375</spage><epage>4384</epage><pages>4375-4384</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Differences in the chemical potential of water and the resulting osmotic pressure across semipermeable membranes are of fundamental importance for many biological systems. Here, we calculate the osmotic pressure and the chemical potential of water for polysaccharide solutions by molecular simulations. We set up a method to measure the osmotic pressure in polysaccharide systems at different concentrations and found that for monomers the experimental trend with respect to the solute concentration is reproduced correctly. However, the calculated osmotic pressure values are systematically too low, and two common carbohydrate force fields (FFs) cannot correctly describe the relationship between the osmotic pressure and the degree of polymerization. Therefore, we reparametrized parts of the GLYCAM06 TIP5P FF based on osmotic pressure data. The predictive power of the resulting GLYCAM06OSMOr14 TIP5P FF is demonstrated for two different sugar molecules over a wide range of concentrations, and additional evaluations for other solution properties show improved agreement with experimental data. Finally, we discuss different methods to obtain the chemical potential of water in solutions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27529356</pmid><doi>10.1021/acs.jctc.6b00295</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-09, Vol.12 (9), p.4375-4384
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1880015862
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemical potential
Computer simulation
Mathematical analysis
Mathematical models
Monomers
Osmotic pressure
Polysaccharides
Reproduction
title Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Chemical%20Potential%20and%20Osmotic%20Pressure%20of%20Polysaccharide%20Solutions%20by%20Molecular%20Simulations&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Sauter,%20Jo%CC%88rg&rft.date=2016-09-13&rft.volume=12&rft.issue=9&rft.spage=4375&rft.epage=4384&rft.pages=4375-4384&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00295&rft_dat=%3Cproquest_cross%3E1819430972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a435t-e17355bb88ab40c47ef3b89503079e8f2f5c04cee1b08eb4063a25b6c67b25e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1819430972&rft_id=info:pmid/27529356&rfr_iscdi=true