Loading…
Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing
Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrate...
Saved in:
Published in: | Analytical chemistry (Washington) 2017-01, Vol.89 (1), p.611-615 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3 |
---|---|
cites | cdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3 |
container_end_page | 615 |
container_issue | 1 |
container_start_page | 611 |
container_title | Analytical chemistry (Washington) |
container_volume | 89 |
creator | Wang, Xinhao Chang, Te-Wei Lin, Guohong Gartia, Manas Ranjan Liu, Gang Logan |
description | Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system. |
doi_str_mv | 10.1021/acs.analchem.6b02484 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025234</sourcerecordid><originalsourceid>FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMoWi9vIDLgxs3Uk8zkMkstXgqiYnU9pJkzdSQzqcl04dub2lbBhZhFAuH7_4TzEXJMYUiB0XNtwlB32ppXbIdiCixX-RYZUM4gFUqxbTIAgCxlEmCP7IfwBkApULFL9pgspFCCD0g1QVunT1ijx85glUxa7fv5q-swvdQhXtzrzs2tDq3rGpOMWz1rulnyaHVfO98mcUtGzjrftNj7SFw2bvmlxmibTLALkT4kO7W2AY_W5wF5ub56Ht2mdw8349HFXapzyfs0K3KseGWk0DQuhWZqqAE1LdBUmMlKA0MQhhaKcyaNqDnUkgnBZaaUNNkBOVv1zr17X2Doy7YJBq3VHbpFKKlSAIyzLP8HyplQec5kRE9_oW9u4ePkvyheZAqkilS-oox3IXisy3kcifYfJYVyKayMwsqNsHItLMZO1uWLaYvVd2hjKAKwApbxn4f_6vwEI8qkog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855938078</pqid></control><display><type>article</type><title>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Xinhao ; Chang, Te-Wei ; Lin, Guohong ; Gartia, Manas Ranjan ; Liu, Gang Logan</creator><creatorcontrib>Wang, Xinhao ; Chang, Te-Wei ; Lin, Guohong ; Gartia, Manas Ranjan ; Liu, Gang Logan</creatorcontrib><description>Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02484</identifier><identifier>PMID: 27976865</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorbance ; Analytical chemistry ; Bioassays ; Biochemistry ; Biosensors ; Colorimetry ; Colorimetry - instrumentation ; Detection ; Equipment Design ; Image processing systems ; Limit of Detection ; Nanostructure ; Nanotechnology - instrumentation ; Optics ; Plasmonics ; Platforms ; Refractometry ; Smartphone - instrumentation ; Smartphones ; Surface Plasmon Resonance - instrumentation ; Urinalysis</subject><ispartof>Analytical chemistry (Washington), 2017-01, Vol.89 (1), p.611-615</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 3, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</citedby><cites>FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</cites><orcidid>0000-0002-4050-8736 ; 0000-0001-6243-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27976865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xinhao</creatorcontrib><creatorcontrib>Chang, Te-Wei</creatorcontrib><creatorcontrib>Lin, Guohong</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><creatorcontrib>Liu, Gang Logan</creatorcontrib><title>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.</description><subject>Absorbance</subject><subject>Analytical chemistry</subject><subject>Bioassays</subject><subject>Biochemistry</subject><subject>Biosensors</subject><subject>Colorimetry</subject><subject>Colorimetry - instrumentation</subject><subject>Detection</subject><subject>Equipment Design</subject><subject>Image processing systems</subject><subject>Limit of Detection</subject><subject>Nanostructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Optics</subject><subject>Plasmonics</subject><subject>Platforms</subject><subject>Refractometry</subject><subject>Smartphone - instrumentation</subject><subject>Smartphones</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Urinalysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkctKAzEUhoMoWi9vIDLgxs3Uk8zkMkstXgqiYnU9pJkzdSQzqcl04dub2lbBhZhFAuH7_4TzEXJMYUiB0XNtwlB32ppXbIdiCixX-RYZUM4gFUqxbTIAgCxlEmCP7IfwBkApULFL9pgspFCCD0g1QVunT1ijx85glUxa7fv5q-swvdQhXtzrzs2tDq3rGpOMWz1rulnyaHVfO98mcUtGzjrftNj7SFw2bvmlxmibTLALkT4kO7W2AY_W5wF5ub56Ht2mdw8349HFXapzyfs0K3KseGWk0DQuhWZqqAE1LdBUmMlKA0MQhhaKcyaNqDnUkgnBZaaUNNkBOVv1zr17X2Doy7YJBq3VHbpFKKlSAIyzLP8HyplQec5kRE9_oW9u4ePkvyheZAqkilS-oox3IXisy3kcifYfJYVyKayMwsqNsHItLMZO1uWLaYvVd2hjKAKwApbxn4f_6vwEI8qkog</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Wang, Xinhao</creator><creator>Chang, Te-Wei</creator><creator>Lin, Guohong</creator><creator>Gartia, Manas Ranjan</creator><creator>Liu, Gang Logan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4050-8736</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid></search><sort><creationdate>20170103</creationdate><title>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</title><author>Wang, Xinhao ; Chang, Te-Wei ; Lin, Guohong ; Gartia, Manas Ranjan ; Liu, Gang Logan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorbance</topic><topic>Analytical chemistry</topic><topic>Bioassays</topic><topic>Biochemistry</topic><topic>Biosensors</topic><topic>Colorimetry</topic><topic>Colorimetry - instrumentation</topic><topic>Detection</topic><topic>Equipment Design</topic><topic>Image processing systems</topic><topic>Limit of Detection</topic><topic>Nanostructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Optics</topic><topic>Plasmonics</topic><topic>Platforms</topic><topic>Refractometry</topic><topic>Smartphone - instrumentation</topic><topic>Smartphones</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Urinalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinhao</creatorcontrib><creatorcontrib>Chang, Te-Wei</creatorcontrib><creatorcontrib>Lin, Guohong</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><creatorcontrib>Liu, Gang Logan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinhao</au><au>Chang, Te-Wei</au><au>Lin, Guohong</au><au>Gartia, Manas Ranjan</au><au>Liu, Gang Logan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-01-03</date><risdate>2017</risdate><volume>89</volume><issue>1</issue><spage>611</spage><epage>615</epage><pages>611-615</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27976865</pmid><doi>10.1021/acs.analchem.6b02484</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4050-8736</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2017-01, Vol.89 (1), p.611-615 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880025234 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Absorbance Analytical chemistry Bioassays Biochemistry Biosensors Colorimetry Colorimetry - instrumentation Detection Equipment Design Image processing systems Limit of Detection Nanostructure Nanotechnology - instrumentation Optics Plasmonics Platforms Refractometry Smartphone - instrumentation Smartphones Surface Plasmon Resonance - instrumentation Urinalysis |
title | Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Referenced%20Smartphone-Based%20Nanoplasmonic%20Imaging%20Platform%20for%20Colorimetric%20Biochemical%20Sensing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Xinhao&rft.date=2017-01-03&rft.volume=89&rft.issue=1&rft.spage=611&rft.epage=615&rft.pages=611-615&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02484&rft_dat=%3Cproquest_cross%3E1880025234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855938078&rft_id=info:pmid/27976865&rfr_iscdi=true |