Loading…

Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing

Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrate...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2017-01, Vol.89 (1), p.611-615
Main Authors: Wang, Xinhao, Chang, Te-Wei, Lin, Guohong, Gartia, Manas Ranjan, Liu, Gang Logan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3
cites cdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3
container_end_page 615
container_issue 1
container_start_page 611
container_title Analytical chemistry (Washington)
container_volume 89
creator Wang, Xinhao
Chang, Te-Wei
Lin, Guohong
Gartia, Manas Ranjan
Liu, Gang Logan
description Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.
doi_str_mv 10.1021/acs.analchem.6b02484
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025234</sourcerecordid><originalsourceid>FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMoWi9vIDLgxs3Uk8zkMkstXgqiYnU9pJkzdSQzqcl04dub2lbBhZhFAuH7_4TzEXJMYUiB0XNtwlB32ppXbIdiCixX-RYZUM4gFUqxbTIAgCxlEmCP7IfwBkApULFL9pgspFCCD0g1QVunT1ijx85glUxa7fv5q-swvdQhXtzrzs2tDq3rGpOMWz1rulnyaHVfO98mcUtGzjrftNj7SFw2bvmlxmibTLALkT4kO7W2AY_W5wF5ub56Ht2mdw8349HFXapzyfs0K3KseGWk0DQuhWZqqAE1LdBUmMlKA0MQhhaKcyaNqDnUkgnBZaaUNNkBOVv1zr17X2Doy7YJBq3VHbpFKKlSAIyzLP8HyplQec5kRE9_oW9u4ePkvyheZAqkilS-oox3IXisy3kcifYfJYVyKayMwsqNsHItLMZO1uWLaYvVd2hjKAKwApbxn4f_6vwEI8qkog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855938078</pqid></control><display><type>article</type><title>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Xinhao ; Chang, Te-Wei ; Lin, Guohong ; Gartia, Manas Ranjan ; Liu, Gang Logan</creator><creatorcontrib>Wang, Xinhao ; Chang, Te-Wei ; Lin, Guohong ; Gartia, Manas Ranjan ; Liu, Gang Logan</creatorcontrib><description>Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02484</identifier><identifier>PMID: 27976865</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorbance ; Analytical chemistry ; Bioassays ; Biochemistry ; Biosensors ; Colorimetry ; Colorimetry - instrumentation ; Detection ; Equipment Design ; Image processing systems ; Limit of Detection ; Nanostructure ; Nanotechnology - instrumentation ; Optics ; Plasmonics ; Platforms ; Refractometry ; Smartphone - instrumentation ; Smartphones ; Surface Plasmon Resonance - instrumentation ; Urinalysis</subject><ispartof>Analytical chemistry (Washington), 2017-01, Vol.89 (1), p.611-615</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 3, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</citedby><cites>FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</cites><orcidid>0000-0002-4050-8736 ; 0000-0001-6243-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27976865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xinhao</creatorcontrib><creatorcontrib>Chang, Te-Wei</creatorcontrib><creatorcontrib>Lin, Guohong</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><creatorcontrib>Liu, Gang Logan</creatorcontrib><title>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.</description><subject>Absorbance</subject><subject>Analytical chemistry</subject><subject>Bioassays</subject><subject>Biochemistry</subject><subject>Biosensors</subject><subject>Colorimetry</subject><subject>Colorimetry - instrumentation</subject><subject>Detection</subject><subject>Equipment Design</subject><subject>Image processing systems</subject><subject>Limit of Detection</subject><subject>Nanostructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Optics</subject><subject>Plasmonics</subject><subject>Platforms</subject><subject>Refractometry</subject><subject>Smartphone - instrumentation</subject><subject>Smartphones</subject><subject>Surface Plasmon Resonance - instrumentation</subject><subject>Urinalysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkctKAzEUhoMoWi9vIDLgxs3Uk8zkMkstXgqiYnU9pJkzdSQzqcl04dub2lbBhZhFAuH7_4TzEXJMYUiB0XNtwlB32ppXbIdiCixX-RYZUM4gFUqxbTIAgCxlEmCP7IfwBkApULFL9pgspFCCD0g1QVunT1ijx85glUxa7fv5q-swvdQhXtzrzs2tDq3rGpOMWz1rulnyaHVfO98mcUtGzjrftNj7SFw2bvmlxmibTLALkT4kO7W2AY_W5wF5ub56Ht2mdw8349HFXapzyfs0K3KseGWk0DQuhWZqqAE1LdBUmMlKA0MQhhaKcyaNqDnUkgnBZaaUNNkBOVv1zr17X2Doy7YJBq3VHbpFKKlSAIyzLP8HyplQec5kRE9_oW9u4ePkvyheZAqkilS-oox3IXisy3kcifYfJYVyKayMwsqNsHItLMZO1uWLaYvVd2hjKAKwApbxn4f_6vwEI8qkog</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Wang, Xinhao</creator><creator>Chang, Te-Wei</creator><creator>Lin, Guohong</creator><creator>Gartia, Manas Ranjan</creator><creator>Liu, Gang Logan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4050-8736</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid></search><sort><creationdate>20170103</creationdate><title>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</title><author>Wang, Xinhao ; Chang, Te-Wei ; Lin, Guohong ; Gartia, Manas Ranjan ; Liu, Gang Logan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorbance</topic><topic>Analytical chemistry</topic><topic>Bioassays</topic><topic>Biochemistry</topic><topic>Biosensors</topic><topic>Colorimetry</topic><topic>Colorimetry - instrumentation</topic><topic>Detection</topic><topic>Equipment Design</topic><topic>Image processing systems</topic><topic>Limit of Detection</topic><topic>Nanostructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Optics</topic><topic>Plasmonics</topic><topic>Platforms</topic><topic>Refractometry</topic><topic>Smartphone - instrumentation</topic><topic>Smartphones</topic><topic>Surface Plasmon Resonance - instrumentation</topic><topic>Urinalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinhao</creatorcontrib><creatorcontrib>Chang, Te-Wei</creatorcontrib><creatorcontrib>Lin, Guohong</creatorcontrib><creatorcontrib>Gartia, Manas Ranjan</creatorcontrib><creatorcontrib>Liu, Gang Logan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinhao</au><au>Chang, Te-Wei</au><au>Lin, Guohong</au><au>Gartia, Manas Ranjan</au><au>Liu, Gang Logan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-01-03</date><risdate>2017</risdate><volume>89</volume><issue>1</issue><spage>611</spage><epage>615</epage><pages>611-615</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Colorimetric sensors usually suffer due to errors from variation in light source intensity, the type of light source, the Bayer filter algorithm, and the sensitivity of the camera to incoming light. Here, we demonstrate a self-referenced portable smartphone-based plasmonic sensing platform integrated with an internal reference sample along with an image processing method to perform colorimetric sensing. Two sensing principles based on unique nanoplasmonics enabled phenomena from a nanostructured plasmonic sensor, named as nanoLCA (nano Lycurgus cup array), were demonstrated here for colorimetric biochemical sensing: liquid refractive index sensing and optical absorbance enhancement sensing. Refractive indices of colorless liquids were measured by simple smartphone imaging and color analysis. Optical absorbance enhancement in the colorimetric biochemical assay was achieved by matching the plasmon resonance wavelength with the chromophore’s absorbance peak wavelength. Such a sensing mechanism improved the limit of detection (LoD) by 100 times in a microplate reader format. Compared with a traditional colorimetric assay such as urine testing strips, a smartphone plasmon enhanced colorimetric sensing system provided 30 times improvement in the LoD. The platform was applied for simulated urine testing to precisely identify the samples with higher protein concentration, which showed potential point-of-care and early detection of kidney disease with the smartphone plasmonic resonance sensing system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27976865</pmid><doi>10.1021/acs.analchem.6b02484</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4050-8736</orcidid><orcidid>https://orcid.org/0000-0001-6243-6780</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-01, Vol.89 (1), p.611-615
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1880025234
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Absorbance
Analytical chemistry
Bioassays
Biochemistry
Biosensors
Colorimetry
Colorimetry - instrumentation
Detection
Equipment Design
Image processing systems
Limit of Detection
Nanostructure
Nanotechnology - instrumentation
Optics
Plasmonics
Platforms
Refractometry
Smartphone - instrumentation
Smartphones
Surface Plasmon Resonance - instrumentation
Urinalysis
title Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A18%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Referenced%20Smartphone-Based%20Nanoplasmonic%20Imaging%20Platform%20for%20Colorimetric%20Biochemical%20Sensing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wang,%20Xinhao&rft.date=2017-01-03&rft.volume=89&rft.issue=1&rft.spage=611&rft.epage=615&rft.pages=611-615&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02484&rft_dat=%3Cproquest_cross%3E1880025234%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a475t-394ed5dc76a11118ecbc1c08b9ecde37da02e06c1985527c6f50f7266573887c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1855938078&rft_id=info:pmid/27976865&rfr_iscdi=true