Loading…

Subdifferential-based implicit return-mapping operators in computational plasticity

In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of th...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Mechanik 2016-11, Vol.96 (11), p.1318-1338
Main Authors: Sysala, Stanislav, Cermak, Martin, Koudelka, Tomáš, Kruis, Jaroslav, Zeman, Jan, Blaheta, Radim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663
cites cdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663
container_end_page 1338
container_issue 11
container_start_page 1318
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 96
creator Sysala, Stanislav
Cermak, Martin
Koudelka, Tomáš
Kruis, Jaroslav
Zeman, Jan
Blaheta, Radim
description In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations. The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening.
doi_str_mv 10.1002/zamm.201500305
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880030730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880030730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKtXzwtevGydJPvKUdT6wCpYRfASZtNEovsyyaL117ulIuLFU2D4vmHyEbJPYUIB2NEn1vWEAU0BOKQbZERTRuMEgG6SEUCSxIxl-TbZ8f4FhqmgfETm875cWGO0002wWMUler2IbN1VVtkQOR1618Q1dp1tnqO20w5D63xkm0i1ddcHDLZtsIq6Cn1YOctdsmWw8nrv-x2Th-nZ_clFfH17fnlyfB0rXhRpXDDFRJZoI0yRgChNkpSGoUFBmdBCZGahFAqlylTTVPASAblmuFCAxmQZH5PD9d7OtW-99kHW1itdVdjotveSFsUqRc5hQA_-oC_t8K_huoHiecJFMeQYk8maUq713mkjO2drdEtJQa4ay1Vj-dN4EMRaeLeVXv5Dy6fj2ey3G69d64P--HHRvcos53kqH2_O5fxiNr1KT7m841_uwpHD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837439891</pqid></control><display><type>article</type><title>Subdifferential-based implicit return-mapping operators in computational plasticity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sysala, Stanislav ; Cermak, Martin ; Koudelka, Tomáš ; Kruis, Jaroslav ; Zeman, Jan ; Blaheta, Radim</creator><creatorcontrib>Sysala, Stanislav ; Cermak, Martin ; Koudelka, Tomáš ; Kruis, Jaroslav ; Zeman, Jan ; Blaheta, Radim</creatorcontrib><description>In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations. The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201500305</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>35Q74 ; 74C05 ; 74S05 ; 90C25 ; Construction ; Elastoplasticity ; Hydrostatics ; implicit return-mapping scheme ; Initial value problems ; limit analysis ; Mathematical models ; Matlab ; multivalued flow direction ; Nonlinear equations ; Nonlinear programming ; Nonlinearity ; nonsmooth yield surface ; semismooth Newton method</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2016-11, Vol.96 (11), p.1318-1338</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</citedby><cites>FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sysala, Stanislav</creatorcontrib><creatorcontrib>Cermak, Martin</creatorcontrib><creatorcontrib>Koudelka, Tomáš</creatorcontrib><creatorcontrib>Kruis, Jaroslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><creatorcontrib>Blaheta, Radim</creatorcontrib><title>Subdifferential-based implicit return-mapping operators in computational plasticity</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations. The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening.</description><subject>35Q74</subject><subject>74C05</subject><subject>74S05</subject><subject>90C25</subject><subject>Construction</subject><subject>Elastoplasticity</subject><subject>Hydrostatics</subject><subject>implicit return-mapping scheme</subject><subject>Initial value problems</subject><subject>limit analysis</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>multivalued flow direction</subject><subject>Nonlinear equations</subject><subject>Nonlinear programming</subject><subject>Nonlinearity</subject><subject>nonsmooth yield surface</subject><subject>semismooth Newton method</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKtXzwtevGydJPvKUdT6wCpYRfASZtNEovsyyaL117ulIuLFU2D4vmHyEbJPYUIB2NEn1vWEAU0BOKQbZERTRuMEgG6SEUCSxIxl-TbZ8f4FhqmgfETm875cWGO0002wWMUler2IbN1VVtkQOR1618Q1dp1tnqO20w5D63xkm0i1ddcHDLZtsIq6Cn1YOctdsmWw8nrv-x2Th-nZ_clFfH17fnlyfB0rXhRpXDDFRJZoI0yRgChNkpSGoUFBmdBCZGahFAqlylTTVPASAblmuFCAxmQZH5PD9d7OtW-99kHW1itdVdjotveSFsUqRc5hQA_-oC_t8K_huoHiecJFMeQYk8maUq713mkjO2drdEtJQa4ay1Vj-dN4EMRaeLeVXv5Dy6fj2ey3G69d64P--HHRvcos53kqH2_O5fxiNr1KT7m841_uwpHD</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Sysala, Stanislav</creator><creator>Cermak, Martin</creator><creator>Koudelka, Tomáš</creator><creator>Kruis, Jaroslav</creator><creator>Zeman, Jan</creator><creator>Blaheta, Radim</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201611</creationdate><title>Subdifferential-based implicit return-mapping operators in computational plasticity</title><author>Sysala, Stanislav ; Cermak, Martin ; Koudelka, Tomáš ; Kruis, Jaroslav ; Zeman, Jan ; Blaheta, Radim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>35Q74</topic><topic>74C05</topic><topic>74S05</topic><topic>90C25</topic><topic>Construction</topic><topic>Elastoplasticity</topic><topic>Hydrostatics</topic><topic>implicit return-mapping scheme</topic><topic>Initial value problems</topic><topic>limit analysis</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>multivalued flow direction</topic><topic>Nonlinear equations</topic><topic>Nonlinear programming</topic><topic>Nonlinearity</topic><topic>nonsmooth yield surface</topic><topic>semismooth Newton method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sysala, Stanislav</creatorcontrib><creatorcontrib>Cermak, Martin</creatorcontrib><creatorcontrib>Koudelka, Tomáš</creatorcontrib><creatorcontrib>Kruis, Jaroslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><creatorcontrib>Blaheta, Radim</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sysala, Stanislav</au><au>Cermak, Martin</au><au>Koudelka, Tomáš</au><au>Kruis, Jaroslav</au><au>Zeman, Jan</au><au>Blaheta, Radim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subdifferential-based implicit return-mapping operators in computational plasticity</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2016-11</date><risdate>2016</risdate><volume>96</volume><issue>11</issue><spage>1318</spage><epage>1338</epage><pages>1318-1338</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations. The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201500305</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2016-11, Vol.96 (11), p.1318-1338
issn 0044-2267
1521-4001
language eng
recordid cdi_proquest_miscellaneous_1880030730
source Wiley-Blackwell Read & Publish Collection
subjects 35Q74
74C05
74S05
90C25
Construction
Elastoplasticity
Hydrostatics
implicit return-mapping scheme
Initial value problems
limit analysis
Mathematical models
Matlab
multivalued flow direction
Nonlinear equations
Nonlinear programming
Nonlinearity
nonsmooth yield surface
semismooth Newton method
title Subdifferential-based implicit return-mapping operators in computational plasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subdifferential-based%20implicit%20return-mapping%20operators%20in%20computational%20plasticity&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Sysala,%20Stanislav&rft.date=2016-11&rft.volume=96&rft.issue=11&rft.spage=1318&rft.epage=1338&rft.pages=1318-1338&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201500305&rft_dat=%3Cproquest_cross%3E1880030730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1837439891&rft_id=info:pmid/&rfr_iscdi=true