Loading…
Subdifferential-based implicit return-mapping operators in computational plasticity
In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of th...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Mechanik 2016-11, Vol.96 (11), p.1318-1338 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663 |
---|---|
cites | cdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663 |
container_end_page | 1338 |
container_issue | 11 |
container_start_page | 1318 |
container_title | Zeitschrift für angewandte Mathematik und Mechanik |
container_volume | 96 |
creator | Sysala, Stanislav Cermak, Martin Koudelka, Tomáš Kruis, Jaroslav Zeman, Jan Blaheta, Radim |
description | In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.
The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. |
doi_str_mv | 10.1002/zamm.201500305 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880030730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880030730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKtXzwtevGydJPvKUdT6wCpYRfASZtNEovsyyaL117ulIuLFU2D4vmHyEbJPYUIB2NEn1vWEAU0BOKQbZERTRuMEgG6SEUCSxIxl-TbZ8f4FhqmgfETm875cWGO0002wWMUler2IbN1VVtkQOR1618Q1dp1tnqO20w5D63xkm0i1ddcHDLZtsIq6Cn1YOctdsmWw8nrv-x2Th-nZ_clFfH17fnlyfB0rXhRpXDDFRJZoI0yRgChNkpSGoUFBmdBCZGahFAqlylTTVPASAblmuFCAxmQZH5PD9d7OtW-99kHW1itdVdjotveSFsUqRc5hQA_-oC_t8K_huoHiecJFMeQYk8maUq713mkjO2drdEtJQa4ay1Vj-dN4EMRaeLeVXv5Dy6fj2ey3G69d64P--HHRvcos53kqH2_O5fxiNr1KT7m841_uwpHD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837439891</pqid></control><display><type>article</type><title>Subdifferential-based implicit return-mapping operators in computational plasticity</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sysala, Stanislav ; Cermak, Martin ; Koudelka, Tomáš ; Kruis, Jaroslav ; Zeman, Jan ; Blaheta, Radim</creator><creatorcontrib>Sysala, Stanislav ; Cermak, Martin ; Koudelka, Tomáš ; Kruis, Jaroslav ; Zeman, Jan ; Blaheta, Radim</creatorcontrib><description>In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.
The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201500305</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>35Q74 ; 74C05 ; 74S05 ; 90C25 ; Construction ; Elastoplasticity ; Hydrostatics ; implicit return-mapping scheme ; Initial value problems ; limit analysis ; Mathematical models ; Matlab ; multivalued flow direction ; Nonlinear equations ; Nonlinear programming ; Nonlinearity ; nonsmooth yield surface ; semismooth Newton method</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2016-11, Vol.96 (11), p.1318-1338</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</citedby><cites>FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sysala, Stanislav</creatorcontrib><creatorcontrib>Cermak, Martin</creatorcontrib><creatorcontrib>Koudelka, Tomáš</creatorcontrib><creatorcontrib>Kruis, Jaroslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><creatorcontrib>Blaheta, Radim</creatorcontrib><title>Subdifferential-based implicit return-mapping operators in computational plasticity</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><addtitle>Z. Angew. Math. Mech</addtitle><description>In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.
The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening.</description><subject>35Q74</subject><subject>74C05</subject><subject>74S05</subject><subject>90C25</subject><subject>Construction</subject><subject>Elastoplasticity</subject><subject>Hydrostatics</subject><subject>implicit return-mapping scheme</subject><subject>Initial value problems</subject><subject>limit analysis</subject><subject>Mathematical models</subject><subject>Matlab</subject><subject>multivalued flow direction</subject><subject>Nonlinear equations</subject><subject>Nonlinear programming</subject><subject>Nonlinearity</subject><subject>nonsmooth yield surface</subject><subject>semismooth Newton method</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKtXzwtevGydJPvKUdT6wCpYRfASZtNEovsyyaL117ulIuLFU2D4vmHyEbJPYUIB2NEn1vWEAU0BOKQbZERTRuMEgG6SEUCSxIxl-TbZ8f4FhqmgfETm875cWGO0002wWMUler2IbN1VVtkQOR1618Q1dp1tnqO20w5D63xkm0i1ddcHDLZtsIq6Cn1YOctdsmWw8nrv-x2Th-nZ_clFfH17fnlyfB0rXhRpXDDFRJZoI0yRgChNkpSGoUFBmdBCZGahFAqlylTTVPASAblmuFCAxmQZH5PD9d7OtW-99kHW1itdVdjotveSFsUqRc5hQA_-oC_t8K_huoHiecJFMeQYk8maUq713mkjO2drdEtJQa4ay1Vj-dN4EMRaeLeVXv5Dy6fj2ey3G69d64P--HHRvcos53kqH2_O5fxiNr1KT7m841_uwpHD</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Sysala, Stanislav</creator><creator>Cermak, Martin</creator><creator>Koudelka, Tomáš</creator><creator>Kruis, Jaroslav</creator><creator>Zeman, Jan</creator><creator>Blaheta, Radim</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201611</creationdate><title>Subdifferential-based implicit return-mapping operators in computational plasticity</title><author>Sysala, Stanislav ; Cermak, Martin ; Koudelka, Tomáš ; Kruis, Jaroslav ; Zeman, Jan ; Blaheta, Radim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>35Q74</topic><topic>74C05</topic><topic>74S05</topic><topic>90C25</topic><topic>Construction</topic><topic>Elastoplasticity</topic><topic>Hydrostatics</topic><topic>implicit return-mapping scheme</topic><topic>Initial value problems</topic><topic>limit analysis</topic><topic>Mathematical models</topic><topic>Matlab</topic><topic>multivalued flow direction</topic><topic>Nonlinear equations</topic><topic>Nonlinear programming</topic><topic>Nonlinearity</topic><topic>nonsmooth yield surface</topic><topic>semismooth Newton method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sysala, Stanislav</creatorcontrib><creatorcontrib>Cermak, Martin</creatorcontrib><creatorcontrib>Koudelka, Tomáš</creatorcontrib><creatorcontrib>Kruis, Jaroslav</creatorcontrib><creatorcontrib>Zeman, Jan</creatorcontrib><creatorcontrib>Blaheta, Radim</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sysala, Stanislav</au><au>Cermak, Martin</au><au>Koudelka, Tomáš</au><au>Kruis, Jaroslav</au><au>Zeman, Jan</au><au>Blaheta, Radim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subdifferential-based implicit return-mapping operators in computational plasticity</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><addtitle>Z. Angew. Math. Mech</addtitle><date>2016-11</date><risdate>2016</risdate><volume>96</volume><issue>11</issue><spage>1318</spage><epage>1338</epage><pages>1318-1338</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>In this paper we explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening. We show that for some models the improved integration scheme also enables us to a priori decide about a type of the return and to investigate the existence, uniqueness, and semismoothness of discretized constitutive operators. The semismooth Newton method is also introduced for solving the incremental boundary‐value problems. The paper contains numerical examples related to slope stability with publicly available Matlab implementations.
The authors explore a numerical solution to elastoplastic constitutive initial value problems. An improved form of the implicit return‐mapping scheme for nonsmooth yield surfaces is proposed that systematically builds upon a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points – apices or edges at which the flow direction is multivalued – only involves a uniquely defined set of non‐linear equations, similarly to smooth yield surfaces. This paper focuses on isotropic models containing: a) yield surfaces with one or two apices (singular points) on the hydrostatic axis, b) plastic pseudo‐potentials that are independent of the Lode angle, and c) possibly nonlinear isotropic hardening.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/zamm.201500305</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2267 |
ispartof | Zeitschrift für angewandte Mathematik und Mechanik, 2016-11, Vol.96 (11), p.1318-1338 |
issn | 0044-2267 1521-4001 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880030730 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 35Q74 74C05 74S05 90C25 Construction Elastoplasticity Hydrostatics implicit return-mapping scheme Initial value problems limit analysis Mathematical models Matlab multivalued flow direction Nonlinear equations Nonlinear programming Nonlinearity nonsmooth yield surface semismooth Newton method |
title | Subdifferential-based implicit return-mapping operators in computational plasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subdifferential-based%20implicit%20return-mapping%20operators%20in%20computational%20plasticity&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Sysala,%20Stanislav&rft.date=2016-11&rft.volume=96&rft.issue=11&rft.spage=1318&rft.epage=1338&rft.pages=1318-1338&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201500305&rft_dat=%3Cproquest_cross%3E1880030730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3885-82c2964ef9f8409bf44bf2afa9129e996fdcca9ccb5e1593ba0a3e2adc0aff663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1837439891&rft_id=info:pmid/&rfr_iscdi=true |