Loading…

Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism

The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on...

Full description

Saved in:
Bibliographic Details
Published in:Meccanica (Milan) 2016-06, Vol.51 (6), p.1301-1320
Main Authors: Avanço, Rafael Henrique, Navarro, Hélio Aparecido, Brasil, Reyolando M. L. R. F., Balthazar, José Manoel, Bueno, Átila Madureira, Tusset, Angelo Marcelo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-9136d5df0fed23c1fc8347fcbd923f97aea5c72d4dab9bc9fef6a2092968824e3
cites cdi_FETCH-LOGICAL-c364t-9136d5df0fed23c1fc8347fcbd923f97aea5c72d4dab9bc9fef6a2092968824e3
container_end_page 1320
container_issue 6
container_start_page 1301
container_title Meccanica (Milan)
container_volume 51
creator Avanço, Rafael Henrique
Navarro, Hélio Aparecido
Brasil, Reyolando M. L. R. F.
Balthazar, José Manoel
Bueno, Átila Madureira
Tusset, Angelo Marcelo
description The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincaré sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations–rotations and chaotic motions.
doi_str_mv 10.1007/s11012-015-0310-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880030898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880030898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-9136d5df0fed23c1fc8347fcbd923f97aea5c72d4dab9bc9fef6a2092968824e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AG85ejA6SZu2OcriFyx4UM8hTSZu1zZdk1bcf2-XevY0MLw3MI-QSw43HKC8TZwDFwy4ZJBxYPyILLgsBVNFXh2TBYCQrMilPCVnKW0BJgvkgtSvgxmwwzAk2gca-tA2AU2kbh9M19hEa9yY76aPtPfU0B0GN7Zjd03xxzYDOlrvp7WNJnyytDF-YKltHEbaod2Y0KTunJx40ya8-JtL8v5w_7Z6YuuXx-fV3ZrZrMgHpnhWOOk8eHQis9zbKstLb2unROZVadBIWwqXO1Or2iqPvjAClFBFVYkcsyW5mu_uYv81Yhp01ySLbWsC9mPSvKoAMqhUNaF8Rm3sU4ro9S42nYl7zUEfeuq5p5566kNPzSdHzE6a2PCBUW_7MYbpo3-kX79feb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880030898</pqid></control><display><type>article</type><title>Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism</title><source>Springer Link</source><creator>Avanço, Rafael Henrique ; Navarro, Hélio Aparecido ; Brasil, Reyolando M. L. R. F. ; Balthazar, José Manoel ; Bueno, Átila Madureira ; Tusset, Angelo Marcelo</creator><creatorcontrib>Avanço, Rafael Henrique ; Navarro, Hélio Aparecido ; Brasil, Reyolando M. L. R. F. ; Balthazar, José Manoel ; Bueno, Átila Madureira ; Tusset, Angelo Marcelo</creatorcontrib><description>The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincaré sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations–rotations and chaotic motions.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-015-0310-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Civil Engineering ; Classical Mechanics ; Dimensionless analysis ; Excitation ; Lyapunov exponents ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Oscillations ; Parameters ; Pendulums ; Physics ; Physics and Astronomy</subject><ispartof>Meccanica (Milan), 2016-06, Vol.51 (6), p.1301-1320</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-9136d5df0fed23c1fc8347fcbd923f97aea5c72d4dab9bc9fef6a2092968824e3</citedby><cites>FETCH-LOGICAL-c364t-9136d5df0fed23c1fc8347fcbd923f97aea5c72d4dab9bc9fef6a2092968824e3</cites><orcidid>0000-0003-2276-0230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Avanço, Rafael Henrique</creatorcontrib><creatorcontrib>Navarro, Hélio Aparecido</creatorcontrib><creatorcontrib>Brasil, Reyolando M. L. R. F.</creatorcontrib><creatorcontrib>Balthazar, José Manoel</creatorcontrib><creatorcontrib>Bueno, Átila Madureira</creatorcontrib><creatorcontrib>Tusset, Angelo Marcelo</creatorcontrib><title>Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincaré sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations–rotations and chaotic motions.</description><subject>Automotive Engineering</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Dimensionless analysis</subject><subject>Excitation</subject><subject>Lyapunov exponents</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Oscillations</subject><subject>Parameters</subject><subject>Pendulums</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AG85ejA6SZu2OcriFyx4UM8hTSZu1zZdk1bcf2-XevY0MLw3MI-QSw43HKC8TZwDFwy4ZJBxYPyILLgsBVNFXh2TBYCQrMilPCVnKW0BJgvkgtSvgxmwwzAk2gca-tA2AU2kbh9M19hEa9yY76aPtPfU0B0GN7Zjd03xxzYDOlrvp7WNJnyytDF-YKltHEbaod2Y0KTunJx40ya8-JtL8v5w_7Z6YuuXx-fV3ZrZrMgHpnhWOOk8eHQis9zbKstLb2unROZVadBIWwqXO1Or2iqPvjAClFBFVYkcsyW5mu_uYv81Yhp01ySLbWsC9mPSvKoAMqhUNaF8Rm3sU4ro9S42nYl7zUEfeuq5p5566kNPzSdHzE6a2PCBUW_7MYbpo3-kX79feb4</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Avanço, Rafael Henrique</creator><creator>Navarro, Hélio Aparecido</creator><creator>Brasil, Reyolando M. L. R. F.</creator><creator>Balthazar, José Manoel</creator><creator>Bueno, Átila Madureira</creator><creator>Tusset, Angelo Marcelo</creator><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-2276-0230</orcidid></search><sort><creationdate>20160601</creationdate><title>Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism</title><author>Avanço, Rafael Henrique ; Navarro, Hélio Aparecido ; Brasil, Reyolando M. L. R. F. ; Balthazar, José Manoel ; Bueno, Átila Madureira ; Tusset, Angelo Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-9136d5df0fed23c1fc8347fcbd923f97aea5c72d4dab9bc9fef6a2092968824e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Dimensionless analysis</topic><topic>Excitation</topic><topic>Lyapunov exponents</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Oscillations</topic><topic>Parameters</topic><topic>Pendulums</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avanço, Rafael Henrique</creatorcontrib><creatorcontrib>Navarro, Hélio Aparecido</creatorcontrib><creatorcontrib>Brasil, Reyolando M. L. R. F.</creatorcontrib><creatorcontrib>Balthazar, José Manoel</creatorcontrib><creatorcontrib>Bueno, Átila Madureira</creatorcontrib><creatorcontrib>Tusset, Angelo Marcelo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avanço, Rafael Henrique</au><au>Navarro, Hélio Aparecido</au><au>Brasil, Reyolando M. L. R. F.</au><au>Balthazar, José Manoel</au><au>Bueno, Átila Madureira</au><au>Tusset, Angelo Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>51</volume><issue>6</issue><spage>1301</spage><epage>1320</epage><pages>1301-1320</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>The nonlinear dynamics behavior analyzed, in this paper, consists in a pendulum vertically excited on the support by a crank-shaft-slider mechanism. The novelty is the obtainment and analysis of a mathematical model for the pendulum dynamics, under an excitation of a crank-slider, which is based on an extension of the mathematical model of the classical parametric pendulums. Through the modeling, it was verified that the nonlinear dynamics of the pendulum, excited by the crank-shaft-slider mechanism approaches to that of harmonic excitation, when one considered the length of the shaft is sufficient larger than the radius of the crank. The nonlinear dynamic analyses focused on observation of different kinds of motion for different values of dimensionless parameters of the adopted mathematical model. These parameters, includes the frequency of excitation, the amplitude and the geometry of the crank-shaft-slider mechanism. The adopted method of analyses used tools, such as, Lyapunov exponents, parameter space plots, basins of attractions, bifurcation diagrams, phase portraits, time histories and Poincaré sections. The kinds of motion include results on fixed point, oscillations, rotations, oscillations–rotations and chaotic motions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-015-0310-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2276-0230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-6455
ispartof Meccanica (Milan), 2016-06, Vol.51 (6), p.1301-1320
issn 0025-6455
1572-9648
language eng
recordid cdi_proquest_miscellaneous_1880030898
source Springer Link
subjects Automotive Engineering
Civil Engineering
Classical Mechanics
Dimensionless analysis
Excitation
Lyapunov exponents
Mathematical models
Mechanical Engineering
Nonlinear dynamics
Oscillations
Parameters
Pendulums
Physics
Physics and Astronomy
title Statements on nonlinear dynamics behavior of a pendulum, excited by a crank-shaft-slider mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statements%20on%20nonlinear%20dynamics%20behavior%20of%20a%20pendulum,%20excited%20by%20a%20crank-shaft-slider%20mechanism&rft.jtitle=Meccanica%20(Milan)&rft.au=Avan%C3%A7o,%20Rafael%20Henrique&rft.date=2016-06-01&rft.volume=51&rft.issue=6&rft.spage=1301&rft.epage=1320&rft.pages=1301-1320&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-015-0310-1&rft_dat=%3Cproquest_cross%3E1880030898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-9136d5df0fed23c1fc8347fcbd923f97aea5c72d4dab9bc9fef6a2092968824e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880030898&rft_id=info:pmid/&rfr_iscdi=true