Loading…

A Versatile Approach for Site‐Specific Lysine Acylation in Proteins

Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐spe...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2017-02, Vol.129 (6), p.1665-1669
Main Authors: Wang, Zhipeng A., Kurra, Yadagiri, Wang, Xin, Zeng, Yu, Lee, Yan‐Jiun, Sharma, Vangmayee, Lin, Hening, Dai, Susie Y., Liu, Wenshe R.
Format: Article
Language:eng ; ger
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3
cites cdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3
container_end_page 1669
container_issue 6
container_start_page 1665
container_title Angewandte Chemie
container_volume 129
creator Wang, Zhipeng A.
Kurra, Yadagiri
Wang, Xin
Zeng, Yu
Lee, Yan‐Jiun
Sharma, Vangmayee
Lin, Hening
Dai, Susie Y.
Liu, Wenshe R.
description Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins. Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen.
doi_str_mv 10.1002/ange.201611415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880031796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914439696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</originalsourceid><addsrcrecordid>eNqFkMtKw0AYhQdRsFa3rgNu3KTOLZnMMpRahaJC1e0wmYtOSZM4kyLZ-Qg-o0_ilIqCm67-zXcO5_8AOEdwgiDEV7J5MRMMUY4QRdkBGKEMo5SwjB2CEYSUpgWm_BichLCCEOaY8RGYlcmz8UH2rjZJ2XW-leo1sa1Plq43Xx-fy84oZ51KFkNwTWTUUEe6bRLXJA--7Y1rwik4srIO5uznjsHT9exxepMu7ue303KRKoxJluZxJrYGal3gSiulZKY1YdwynbOqIogZRrHFkjJDMI2PyMwYyHKtLeKyImNwueuNO982JvRi7YIydS0b026CQEUBYazheUQv_qGrduObuE4gjiglPN9DFXFuURDMIjXZUcq3IXhjRefdWvpBICi27sXWvfh1HwN8F3iPWoc9tCjv5rO_7DdYW4cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860088327</pqid></control><display><type>article</type><title>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</title><source>Wiley</source><creator>Wang, Zhipeng A. ; Kurra, Yadagiri ; Wang, Xin ; Zeng, Yu ; Lee, Yan‐Jiun ; Sharma, Vangmayee ; Lin, Hening ; Dai, Susie Y. ; Liu, Wenshe R.</creator><creatorcontrib>Wang, Zhipeng A. ; Kurra, Yadagiri ; Wang, Xin ; Zeng, Yu ; Lee, Yan‐Jiun ; Sharma, Vangmayee ; Lin, Hening ; Dai, Susie Y. ; Liu, Wenshe R.</creatorcontrib><description>Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins. Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201611415</identifier><language>eng ; ger</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetylation ; Acylation ; Amber ; Amber-Unterdrückung ; Azidonorleucin ; Chemistry ; E coli ; Genetic code ; Genetics ; Government regulations ; Histone H3 ; Histones ; Lysinacylierung ; Lysine ; Post-translation ; Protein biosynthesis ; Proteinmodifikationen ; Proteins ; Staudinger-Ligation ; Synthesis ; Translation ; tRNA ; Ubiquitin</subject><ispartof>Angewandte Chemie, 2017-02, Vol.129 (6), p.1665-1669</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</citedby><cites>FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</cites><orcidid>0000-0002-7078-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Lee, Yan‐Jiun</creatorcontrib><creatorcontrib>Sharma, Vangmayee</creatorcontrib><creatorcontrib>Lin, Hening</creatorcontrib><creatorcontrib>Dai, Susie Y.</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><title>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</title><title>Angewandte Chemie</title><description>Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins. Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen.</description><subject>Acetylation</subject><subject>Acylation</subject><subject>Amber</subject><subject>Amber-Unterdrückung</subject><subject>Azidonorleucin</subject><subject>Chemistry</subject><subject>E coli</subject><subject>Genetic code</subject><subject>Genetics</subject><subject>Government regulations</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Lysinacylierung</subject><subject>Lysine</subject><subject>Post-translation</subject><subject>Protein biosynthesis</subject><subject>Proteinmodifikationen</subject><subject>Proteins</subject><subject>Staudinger-Ligation</subject><subject>Synthesis</subject><subject>Translation</subject><subject>tRNA</subject><subject>Ubiquitin</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AYhQdRsFa3rgNu3KTOLZnMMpRahaJC1e0wmYtOSZM4kyLZ-Qg-o0_ilIqCm67-zXcO5_8AOEdwgiDEV7J5MRMMUY4QRdkBGKEMo5SwjB2CEYSUpgWm_BichLCCEOaY8RGYlcmz8UH2rjZJ2XW-leo1sa1Plq43Xx-fy84oZ51KFkNwTWTUUEe6bRLXJA--7Y1rwik4srIO5uznjsHT9exxepMu7ue303KRKoxJluZxJrYGal3gSiulZKY1YdwynbOqIogZRrHFkjJDMI2PyMwYyHKtLeKyImNwueuNO982JvRi7YIydS0b026CQEUBYazheUQv_qGrduObuE4gjiglPN9DFXFuURDMIjXZUcq3IXhjRefdWvpBICi27sXWvfh1HwN8F3iPWoc9tCjv5rO_7DdYW4cz</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Wang, Zhipeng A.</creator><creator>Kurra, Yadagiri</creator><creator>Wang, Xin</creator><creator>Zeng, Yu</creator><creator>Lee, Yan‐Jiun</creator><creator>Sharma, Vangmayee</creator><creator>Lin, Hening</creator><creator>Dai, Susie Y.</creator><creator>Liu, Wenshe R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid></search><sort><creationdate>20170201</creationdate><title>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</title><author>Wang, Zhipeng A. ; Kurra, Yadagiri ; Wang, Xin ; Zeng, Yu ; Lee, Yan‐Jiun ; Sharma, Vangmayee ; Lin, Hening ; Dai, Susie Y. ; Liu, Wenshe R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ger</language><creationdate>2017</creationdate><topic>Acetylation</topic><topic>Acylation</topic><topic>Amber</topic><topic>Amber-Unterdrückung</topic><topic>Azidonorleucin</topic><topic>Chemistry</topic><topic>E coli</topic><topic>Genetic code</topic><topic>Genetics</topic><topic>Government regulations</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Lysinacylierung</topic><topic>Lysine</topic><topic>Post-translation</topic><topic>Protein biosynthesis</topic><topic>Proteinmodifikationen</topic><topic>Proteins</topic><topic>Staudinger-Ligation</topic><topic>Synthesis</topic><topic>Translation</topic><topic>tRNA</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Lee, Yan‐Jiun</creatorcontrib><creatorcontrib>Sharma, Vangmayee</creatorcontrib><creatorcontrib>Lin, Hening</creatorcontrib><creatorcontrib>Dai, Susie Y.</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhipeng A.</au><au>Kurra, Yadagiri</au><au>Wang, Xin</au><au>Zeng, Yu</au><au>Lee, Yan‐Jiun</au><au>Sharma, Vangmayee</au><au>Lin, Hening</au><au>Dai, Susie Y.</au><au>Liu, Wenshe R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</atitle><jtitle>Angewandte Chemie</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>129</volume><issue>6</issue><spage>1665</spage><epage>1669</epage><pages>1665-1669</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins. Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201611415</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2017-02, Vol.129 (6), p.1665-1669
issn 0044-8249
1521-3757
language eng ; ger
recordid cdi_proquest_miscellaneous_1880031796
source Wiley
subjects Acetylation
Acylation
Amber
Amber-Unterdrückung
Azidonorleucin
Chemistry
E coli
Genetic code
Genetics
Government regulations
Histone H3
Histones
Lysinacylierung
Lysine
Post-translation
Protein biosynthesis
Proteinmodifikationen
Proteins
Staudinger-Ligation
Synthesis
Translation
tRNA
Ubiquitin
title A Versatile Approach for Site‐Specific Lysine Acylation in Proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Versatile%20Approach%20for%20Site%E2%80%90Specific%20Lysine%20Acylation%20in%20Proteins&rft.jtitle=Angewandte%20Chemie&rft.au=Wang,%20Zhipeng%20A.&rft.date=2017-02-01&rft.volume=129&rft.issue=6&rft.spage=1665&rft.epage=1669&rft.pages=1665-1669&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201611415&rft_dat=%3Cproquest_cross%3E1914439696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1860088327&rft_id=info:pmid/&rfr_iscdi=true