Loading…
A Versatile Approach for Site‐Specific Lysine Acylation in Proteins
Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐spe...
Saved in:
Published in: | Angewandte Chemie 2017-02, Vol.129 (6), p.1665-1669 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | eng ; ger |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3 |
container_end_page | 1669 |
container_issue | 6 |
container_start_page | 1665 |
container_title | Angewandte Chemie |
container_volume | 129 |
creator | Wang, Zhipeng A. Kurra, Yadagiri Wang, Xin Zeng, Yu Lee, Yan‐Jiun Sharma, Vangmayee Lin, Hening Dai, Susie Y. Liu, Wenshe R. |
description | Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.
Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen. |
doi_str_mv | 10.1002/ange.201611415 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880031796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914439696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</originalsourceid><addsrcrecordid>eNqFkMtKw0AYhQdRsFa3rgNu3KTOLZnMMpRahaJC1e0wmYtOSZM4kyLZ-Qg-o0_ilIqCm67-zXcO5_8AOEdwgiDEV7J5MRMMUY4QRdkBGKEMo5SwjB2CEYSUpgWm_BichLCCEOaY8RGYlcmz8UH2rjZJ2XW-leo1sa1Plq43Xx-fy84oZ51KFkNwTWTUUEe6bRLXJA--7Y1rwik4srIO5uznjsHT9exxepMu7ue303KRKoxJluZxJrYGal3gSiulZKY1YdwynbOqIogZRrHFkjJDMI2PyMwYyHKtLeKyImNwueuNO982JvRi7YIydS0b026CQEUBYazheUQv_qGrduObuE4gjiglPN9DFXFuURDMIjXZUcq3IXhjRefdWvpBICi27sXWvfh1HwN8F3iPWoc9tCjv5rO_7DdYW4cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860088327</pqid></control><display><type>article</type><title>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</title><source>Wiley</source><creator>Wang, Zhipeng A. ; Kurra, Yadagiri ; Wang, Xin ; Zeng, Yu ; Lee, Yan‐Jiun ; Sharma, Vangmayee ; Lin, Hening ; Dai, Susie Y. ; Liu, Wenshe R.</creator><creatorcontrib>Wang, Zhipeng A. ; Kurra, Yadagiri ; Wang, Xin ; Zeng, Yu ; Lee, Yan‐Jiun ; Sharma, Vangmayee ; Lin, Hening ; Dai, Susie Y. ; Liu, Wenshe R.</creatorcontrib><description>Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.
Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201611415</identifier><language>eng ; ger</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetylation ; Acylation ; Amber ; Amber-Unterdrückung ; Azidonorleucin ; Chemistry ; E coli ; Genetic code ; Genetics ; Government regulations ; Histone H3 ; Histones ; Lysinacylierung ; Lysine ; Post-translation ; Protein biosynthesis ; Proteinmodifikationen ; Proteins ; Staudinger-Ligation ; Synthesis ; Translation ; tRNA ; Ubiquitin</subject><ispartof>Angewandte Chemie, 2017-02, Vol.129 (6), p.1665-1669</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</citedby><cites>FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</cites><orcidid>0000-0002-7078-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Lee, Yan‐Jiun</creatorcontrib><creatorcontrib>Sharma, Vangmayee</creatorcontrib><creatorcontrib>Lin, Hening</creatorcontrib><creatorcontrib>Dai, Susie Y.</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><title>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</title><title>Angewandte Chemie</title><description>Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.
Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen.</description><subject>Acetylation</subject><subject>Acylation</subject><subject>Amber</subject><subject>Amber-Unterdrückung</subject><subject>Azidonorleucin</subject><subject>Chemistry</subject><subject>E coli</subject><subject>Genetic code</subject><subject>Genetics</subject><subject>Government regulations</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Lysinacylierung</subject><subject>Lysine</subject><subject>Post-translation</subject><subject>Protein biosynthesis</subject><subject>Proteinmodifikationen</subject><subject>Proteins</subject><subject>Staudinger-Ligation</subject><subject>Synthesis</subject><subject>Translation</subject><subject>tRNA</subject><subject>Ubiquitin</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AYhQdRsFa3rgNu3KTOLZnMMpRahaJC1e0wmYtOSZM4kyLZ-Qg-o0_ilIqCm67-zXcO5_8AOEdwgiDEV7J5MRMMUY4QRdkBGKEMo5SwjB2CEYSUpgWm_BichLCCEOaY8RGYlcmz8UH2rjZJ2XW-leo1sa1Plq43Xx-fy84oZ51KFkNwTWTUUEe6bRLXJA--7Y1rwik4srIO5uznjsHT9exxepMu7ue303KRKoxJluZxJrYGal3gSiulZKY1YdwynbOqIogZRrHFkjJDMI2PyMwYyHKtLeKyImNwueuNO982JvRi7YIydS0b026CQEUBYazheUQv_qGrduObuE4gjiglPN9DFXFuURDMIjXZUcq3IXhjRefdWvpBICi27sXWvfh1HwN8F3iPWoc9tCjv5rO_7DdYW4cz</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Wang, Zhipeng A.</creator><creator>Kurra, Yadagiri</creator><creator>Wang, Xin</creator><creator>Zeng, Yu</creator><creator>Lee, Yan‐Jiun</creator><creator>Sharma, Vangmayee</creator><creator>Lin, Hening</creator><creator>Dai, Susie Y.</creator><creator>Liu, Wenshe R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid></search><sort><creationdate>20170201</creationdate><title>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</title><author>Wang, Zhipeng A. ; Kurra, Yadagiri ; Wang, Xin ; Zeng, Yu ; Lee, Yan‐Jiun ; Sharma, Vangmayee ; Lin, Hening ; Dai, Susie Y. ; Liu, Wenshe R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; ger</language><creationdate>2017</creationdate><topic>Acetylation</topic><topic>Acylation</topic><topic>Amber</topic><topic>Amber-Unterdrückung</topic><topic>Azidonorleucin</topic><topic>Chemistry</topic><topic>E coli</topic><topic>Genetic code</topic><topic>Genetics</topic><topic>Government regulations</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Lysinacylierung</topic><topic>Lysine</topic><topic>Post-translation</topic><topic>Protein biosynthesis</topic><topic>Proteinmodifikationen</topic><topic>Proteins</topic><topic>Staudinger-Ligation</topic><topic>Synthesis</topic><topic>Translation</topic><topic>tRNA</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhipeng A.</creatorcontrib><creatorcontrib>Kurra, Yadagiri</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Zeng, Yu</creatorcontrib><creatorcontrib>Lee, Yan‐Jiun</creatorcontrib><creatorcontrib>Sharma, Vangmayee</creatorcontrib><creatorcontrib>Lin, Hening</creatorcontrib><creatorcontrib>Dai, Susie Y.</creatorcontrib><creatorcontrib>Liu, Wenshe R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhipeng A.</au><au>Kurra, Yadagiri</au><au>Wang, Xin</au><au>Zeng, Yu</au><au>Lee, Yan‐Jiun</au><au>Sharma, Vangmayee</au><au>Lin, Hening</au><au>Dai, Susie Y.</au><au>Liu, Wenshe R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Versatile Approach for Site‐Specific Lysine Acylation in Proteins</atitle><jtitle>Angewandte Chemie</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>129</volume><issue>6</issue><spage>1665</spage><epage>1669</epage><pages>1665-1669</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Using amber suppression in coordination with a mutant pyrrolysyl‐tRNA synthetase‐tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site‐specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su‐H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post‐translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.
Azidonorleucin, eine Azid‐haltige Aminosäure, wurde genetisch codiert und in Modellproteine eingebaut. Dieser Einbau, zusammen mit einer nachfolgenden spurlosen Staudinger‐Ligation, erweitert erheblich die Möglichkeiten zur Synthese von Proteinen mit einer Vielzahl positionsspezifischer Lysinacylierungen.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201611415</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7078-6534</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2017-02, Vol.129 (6), p.1665-1669 |
issn | 0044-8249 1521-3757 |
language | eng ; ger |
recordid | cdi_proquest_miscellaneous_1880031796 |
source | Wiley |
subjects | Acetylation Acylation Amber Amber-Unterdrückung Azidonorleucin Chemistry E coli Genetic code Genetics Government regulations Histone H3 Histones Lysinacylierung Lysine Post-translation Protein biosynthesis Proteinmodifikationen Proteins Staudinger-Ligation Synthesis Translation tRNA Ubiquitin |
title | A Versatile Approach for Site‐Specific Lysine Acylation in Proteins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Versatile%20Approach%20for%20Site%E2%80%90Specific%20Lysine%20Acylation%20in%20Proteins&rft.jtitle=Angewandte%20Chemie&rft.au=Wang,%20Zhipeng%20A.&rft.date=2017-02-01&rft.volume=129&rft.issue=6&rft.spage=1665&rft.epage=1669&rft.pages=1665-1669&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201611415&rft_dat=%3Cproquest_cross%3E1914439696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2235-60022fe0dd82bdccca5dd379f7d67bb317e742f2a47e324611a5ee076ddf19ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1860088327&rft_id=info:pmid/&rfr_iscdi=true |