Loading…
Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum
Plasmodium of slime mould Physarum polycephalum is a large single celled organism visible unaided by the eye. This slime mould is capable of optimising the shape of its protoplasmic networks in spatial configurations of attractants and repellents. Such adaptive behaviour can interpreted as computati...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2014-02, Vol.191, p.844-853 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plasmodium of slime mould Physarum polycephalum is a large single celled organism visible unaided by the eye. This slime mould is capable of optimising the shape of its protoplasmic networks in spatial configurations of attractants and repellents. Such adaptive behaviour can interpreted as computation. When exposed to attractants and repellents, Physarum changes patterns of its electrical activity. We experimentally derived a unique one-to-one mapping between a range of selected bioactive chemicals and patterns of oscillations of the slime mould's extracellular electrical potential. This direct and rapid change demonstrates detection of these chemicals in a similar manner to a biological contactless chemical sensor. We believe results could be used in future designs of slime mould based chemical sensors and computers. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2013.10.064 |