Loading…
Quantifying the mesoscopic shear strains in plane strain compressed polycrystalline zirconium
An algorithm is used to estimate mesoscopic strains in a deformed polycrystalline material. This requires comparison of microstructures before and after imposed macroscopic plastic deformations, in order to estimate the local/mesoscopic strains from the displacements of identifiable grain boundary s...
Saved in:
Published in: | Acta materialia 2014-05, Vol.69, p.265-274 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An algorithm is used to estimate mesoscopic strains in a deformed polycrystalline material. This requires comparison of microstructures before and after imposed macroscopic plastic deformations, in order to estimate the local/mesoscopic strains from the displacements of identifiable grain boundary segments. The algorithm was applied to lightly plane strain compressed (PSC) polycrystalline zirconium. Very large (up to 1.2) near-boundary mesoscopic shear strains were estimated. These were well above the estimated measurement uncertainties and remarkably larger than the extremely small (0.01–0.04) PSC strains imposed. Opposing local shears, on both sides of a grain boundary, appeared to compensate each other. Direct correlations were noted, in the same grain, between mesoscopic shear strains and (i) in-grain misorientations and (ii) subsequent grain fragmentation. |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2014.01.023 |