Loading…
New Nematotoxic Indoloditerpenoid Produced by Gymnoascus reessii za-130
Chemical investigation of the fungal strain Gymnoascus reessii za-130, which was previously isolated from the rhizosphere of tomato plants infected by the root-knot nematode Meloidogyne incognita, led to the isolation and identification of a new indoloditerpenoid metabolite designated gymnoascole ac...
Saved in:
Published in: | Journal of agricultural and food chemistry 2017-04, Vol.65 (15), p.3127-3132 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemical investigation of the fungal strain Gymnoascus reessii za-130, which was previously isolated from the rhizosphere of tomato plants infected by the root-knot nematode Meloidogyne incognita, led to the isolation and identification of a new indoloditerpenoid metabolite designated gymnoascole acetate. Its structure was established by spectroscopic methods including 1D- and 2D-NMR and MS analyses. Gymnoascole acetate demonstrated strong adverse effects on M. incognita second-stage juvenile (J2) viability; exposure to 36 μg/mL for 24 h induced 100% paralysis of J2 (EC50 = 47.5 μg/mL). Gymnoascole acetate suppressed M. incognita egg hatch relative to controls by >90% at 133 μg/mL after 7 days of exposure. The numbers of root galls and J2 in both soil and roots were significantly reduced (p = 0.05) by treatment with 2–200 μg/mL gymnoascole acetate/kg soil, compared to untreated control plants; nematode suppression increased with gymnoascole acetate concentration. This study demonstrated the nematotoxicity of gymnoascole acetate and indicates that it might be a potential biobased component in integrated management of M. incognita. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.6b04353 |