Loading…

Simulation of arsenic retention in constructed wetlands

The software RCB-arsenic was developed previously to simulate the metalloid behavior in a constructed wetland (CW). The model simulates water flow and reactive transport by contemplating the major processes of arsenic (As) retention inside of CW. The objective of this study was to validate the RCB-a...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2017, Vol.24 (3), p.2394-2401
Main Authors: Valles-Aragón, M.C., Alarcón-Herrera, M.T., Llorens, E., Obradors-Prats, J., Leyva, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The software RCB-arsenic was developed previously to simulate the metalloid behavior in a constructed wetland (CW). The model simulates water flow and reactive transport by contemplating the major processes of arsenic (As) retention inside of CW. The objective of this study was to validate the RCB-arsenic model by simulating the behavior of horizontal flow CW for As removal from water. The model validation was made using data from a 122-day experiment. Two CWs prototypes were used: one planted with Eleocharis macrostachya (CW_planted) and another one unplanted (CW_unplanted) as a control. The prototypes were fed with synthetic water prepared using well water and sodium arsenite (NaAsO 2 ). In the RCB-arsenic model, a CW prototype was represented using a 2D mesh sized in accordance with the experiment. For simulation of As retention in CW, data addition was established in two stages that considered the mechanisms in the system: (1) aqueous complexation, precipitation/dissolution, and adsorption on granular media and (2) retention by plants: uptake (absorption) and rhizofiltration (adsorption). Simulation of As outlet (μg/L) in stage_1 was compared with CW_unplanted; the experimental mean was 40.79 ± 7.76 and the simulated 39.96 ± 6.32. As concentration (μg/L) in stage_2 was compared with CW_planted, the experimental mean was 9.34 ± 4.80 and the simulated 5.14 ± 0.72. The mass-balance simulation and experiment at 122 days of operation had a similar As retention rate (94 and 91%). The calibrated model RCB-arsenic adequately simulated the As retention in a CW; therefore, it constitutes a powerful tool of design.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-016-7989-y