Loading…

GHG emissions and other environmental impacts of indirect land use change mitigation

The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the app...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology. Bioenergy 2017-04, Vol.9 (4), p.725-742
Main Authors: Gerssen‐Gondelach, Sarah J., Wicke, Birka, Faaij, Andre P. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the application of these measures may influence the greenhouse gas (GHG) balance and other environmental impacts of agricultural and biofuel production. This study applies a novel, integrated approach to assess the environmental impacts of agricultural and biofuel production for three ILUC mitigation scenarios, representing a low, medium and high miscanthus‐based ethanol production potential, and for three agricultural intensification pathways in terms of sustainability in Lublin province in 2020. Generally, the ILUC mitigation scenarios attain lower net annual emissions compared to a baseline scenario that excludes ILUC mitigation and bioethanol production. However, the reduction potential significantly depends on the intensification pathway considered. For example, in the moderate ILUC mitigation scenario, the net annual GHG emissions in the case study are 2.3 MtCO2‐eq yr−1 (1.8 tCO2‐eq ha−1 yr−1) for conventional intensification and −0.8 MtCO2‐eq yr−1 (−0.6 tCO2‐eq ha−1 yr−1) for sustainable intensification, compared to 3.0 MtCO2‐eq yr−1 (2.3 tCO2‐eq ha−1 yr−1) in the baseline scenario. In addition, the intensification pathway is found to be more influential for the GHG balance than the ILUC mitigation scenario, indicating the importance of how agricultural intensification is implemented in practice. Furthermore, when the net emissions are included in the assessment of GHG emissions from bioenergy, the ILUC mitigation scenarios often abate GHG emissions compared to gasoline. But sustainable intensification is required to attain GHG abatement potentials of 90% or higher. A qualitative assessment of the impacts on biodiversity, water quantity and quality, soil quality and air quality also emphasizes the importance of sustainable intensification.
ISSN:1757-1693
1757-1707
DOI:10.1111/gcbb.12394